INSTITUTE ELECTIVES (EEE)

INSTITUTE ELECTIVE I

Slot	Category Code	Course Code	Courses	L-T-P-J	Hours	Credit
		23IEL31M	Introduction to Flight Dynamics and Control	3-0-0-0	3	3
E		IEC 23IEL31N Introduction to Power Processing 3-0-0-0 23IEL31O Electrical Drives and Control for Automation 3-0-0-0	Introduction to Power Processing	3-0-0-0	3	3
	IEC		3-0-0-0	3	3	
		23IEL31P	Artificial Intelligence in Power Systems	3-0-0-0	3	3

DETAILED SYLLABUS INSTITUTE ELECTIVE I

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL31M	Introduction to Flight Dynamics and Control	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW: This course provides a fundamental understanding of control systems, aerodynamics, aircraft stability, and flight dynamics, catering to students from various engineering disciplines. It covers key concepts such as airfoil characteristics, aircraft motion, flight control systems, and emerging technologies like UAV control and AI-driven flight automation, equipping students with the foundational knowledge required for aerospace applications.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain fundamental concepts of control systems, stability, and state-space representation.	Understand
CO2	Explain the principles of aerodynamics, airfoil characteristics, and aircraft performance parameters.	Understand
СОЗ	Explain aircraft stability, control surfaces, and their role in maneuverability.	Understand
CO4	Explain aircraft dynamics, flight control systems, and stability augmentation techniques.	Understand
CO5	Explain modern flight control technologies, UAV applications, and future trends in aerospace automation.	Understand

iii) SYLLABUS

Introduction to flight dynamics, open-loop and closed-loop control, transfer function, time-domain analysis, state-space representation, controllability, and observability.

Standard atmosphere, aerodynamic flows, Mach and Reynolds numbers, airfoil characteristics, lift and drag, stalling, drag polar, flight equations, thrust and power requirements, range, and endurance.

Stability concepts, Routh-Hurwitz criterion, root locus, aircraft control surfaces (elevator, aileron, rudder, flaps, spoilers), wind tunnels, and flow similarity.

ircraft motion modes (short period, phugoid, spiral divergence, Dutch roll), static and dynamic stability, lateral and longitudinal dynamics, autopilot systems, and stability augmentation.

Fly-by-wire systems, UAV control challenges, AI and adaptive control in aerospace, flight simulation tools, and future trends in aerospace automation.

iv) a) TEXT BOOKS

- 1. John D. Anderson Jr., Introduction to Flight, McGraw-Hill, 2021.
- 2. Etkin B. & Reid L.D., Dynamics of Flight: Stability and Control, Wiley, 1996.
- 3. Nelson R.C., Flight Stability and Automatic Control, McGraw-Hill, 1998.
- 4. Cook M.V., Flight Dynamics Principles, Butterworth-Heinemann, 2012.
- 5. Stevens B.L. & Lewis F.L., Aircraft Control and Simulation, Wiley, 2015.

b) REFERENCES

- 1. Anderson J.D. Jr. Fundamentals of Aerodynamics, McGraw-Hill, 2016.
- 2. Houghton E.L., & Carpenter P.W. *Aerodynamics for Engineering Students*, Elsevier, 2017.

Year: 2023 (Version 1)

- 3. Abbott, I.H. & von Doenhoff A.E. *Theory of Wing Sections*, Dover Publications, 1959
- 4. McCormick B.W., Aerodynamics, Aeronautics, and Flight Mechanics, Wiley, 1994.
- 5. McLean D. Automatic Flight Control, Prentice Hall, 1990.
- 6. Roskam J. Airplane Flight Dynamics and Automatic Flight Controls, DAR corporation, 2001.
- 7. Austin R. Unmanned Aircraft Systems: UAV Design, Development and Deployment, Wiley, 2011.
- 8. Dorf R.C. & Bishop R.H., Modern Control Systems, Pearson, 2021.
- 9. Ogata K., Modern Control Engineering, Pearson, 2010.
- 10. Kuo B.C., Automatic Control Systems, Pearson, 2018.
- 11. Nise N.S., Control Systems Engineering, Wiley, 2021.
- 12. D'Azzo J.J., Linear Control System Analysis and Design, McGraw-Hill, 2011.

Module	Contents	No. of hours
Ι	Fundamentals of Control Systems and Stability Introduction to control system: Open loop and closed loop control systems - Transfer function of LTI systems - characteristic equation - Type and order of system. Time domain analysis of control systems: Standard test signals - Transient and steady state responses - first and second order systems - time domain specifications - step responses of first and second order systems. Introduction to state space: state equation of linear continuous time systems - Eigen values and Eigen vectors of system matrix - concept of controllability & observability - relationship between state equations and transfer function.	8
II	Aerodynamics and Aircraft Performance Introduction to Aerodynamics: standard atmosphere – definition of altitudes—density, pressure and temperature altitudes. Aerodynamic flows – inviscid and viscous flows – incompressible and compressible flows – Mach number – laminar and turbulent flows – Reynolds number. Airfoils: Airfoil nomenclature – symmetric and cambered airfoils – generation of lift. Wing geometry –aspect ratio – chord line – angle of attack. Aerodynamic forces and moments: aerodynamic coefficients – lift, drag and moment coefficients – lift curve, drag curve – stalling of airfoil.	10

	Aircraft Performance : Drag Polar – Equation of motion of aircraft for level, un–accelerated flight. Thrust and power required for level, un–accelerated flight– thrust and power available – condition for maximum velocity.	
III	Aircraft Stability and Control Surfaces Concept of stability: Bounded Input Bounded Output stability – stability of feedback system – location of poles and stability – Routh Hurwitz stability criterion. Root locus: General rules for constructing Root loci – stability from root loci – effect of addition of poles and zeros. Control surfaces: elevator – aileron – rudder – dihedral angle and its effects – flaps and slots – spoilers. Flow similarity – Wind tunnels – open and close wind tunnels.	9
IV	Aircraft Dynamics and Flight Control Aircraft dynamic modes: Short period, phugoid, spiral divergence, and Dutch roll (concepts only, minimal mathematics). Aircraft Stability and Control: Static and dynamic stability – conditions for longitudinal static stability. Longitudinal and lateral dynamics (linear state space model) – Longitudinal dynamic modes - short period, phugoid. Lateral and directional dynamic stability – Spiral divergence and dutch roll (concepts only - mathematical derivations not needed) Autopilot and flight control systems: Actuators, displacement autopilots, pitch displacement, attitude hold, velocity hold. Block diagrams and control design for aircraft stability augmentation systems.	9
V	Emerging Trends in Flight Control and UAV Applications Introduction to fly-by-wire control systems: Digital flight control and electronic stability. Unmanned Aerial Vehicles (UAVs): Flight control challenges, stability considerations, autonomous navigation. Introduction to Adaptive and Intelligent Control: AI and machine learning applications in aerospace control. Flight Simulation and Software Tools: Introduction to computational tools for flight dynamics analysis. Future Trends in Aerospace Control: Hypersonic flight, space vehicle control, and automation in modern aircraft.	9
	Total hours	45

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks

CA Exams (2 numbers) : 20 marks

Assignment/Project/Case study etc. : 15 marks

Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL31N	Introduction to Power Processing	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW

This course introduces power electronics and its applications in power conversion, electric drives, renewable energy, and electric vehicles. It covers power semiconductor devices, AC-DC, DC-DC, and DC-AC converters, motor control, solar and wind energy systems, power supplies, and EV powertrains and charging technologies. Students will gain fundamental knowledge of power processing systems used in industrial, renewable energy, and transportation sectors.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the power semiconductor devices and wide bandgap devices.	Understand
CO2	Explain the operation of AC-DC rectifiers, DC-DC converters, DC-AC inverters, AC voltage controllers, and the impact of Total Harmonic Distortion.	Understand
СОЗ	Explain the working of electric motor drives, including 4-quadrant DC motor control and v/f control of induction motors, along with industrial applications.	Understand
CO4	Illustrate the power electronics applications in renewable energy systems, including solar PV, wind energy, energy storage, grid integration, microgrids, and smart grids.	Understand
CO5	Explain power supplies and power electronics in electric vehicles, powertrain, charging technologies and energy storage solutions.	Understand

iii) SYLLABUS

Power semiconductor devices – Diode, SCR, MOSFET, IGBT – operation and characteristics, wide bandgap devices (SiC, GaN), applications in renewable energy and transportation.

Single-phase fully controlled rectifier (R, RL load), DC-DC converters – Buck, Boost, Buck-Boost, single-phase full bridge inverter – square-wave operation, sinusoidal PWM, THD, introduction to AC voltage controllers.

Electric drives – block diagram, 4-quadrant DC motor, v/f control of induction motor, industrial applications – heating, lighting, robotics, traction, aerospace.

Solar PV systems – off-grid, on-grid, MPPT, wind energy systems, energy storage – lithium-ion batteries, hydrogen fuel cells, grid integration, microgrids.

Linear and switched-mode power supplies (SMPS), EV classifications – HEV, PHEV, BEV, powertrain schematic, EV charging – fast/wireless, energy storage – lithium-ion batteries, hydrogen fuel cells, future trends.

iv) a) TEXTBOOKS

- 1) Ned Mohan, Tore M. Undeland, William P. Robbins, *Power Electronics: Converters, Applications, and Design*, Wiley, 3rd Edition, 2002.
- 2) Muhammad H. Rashid, *Power Electronics: Circuits, Devices & Applications*, Pearson, 4th Edition, 2013.
- 3) P.S. Bimbhra, *Power Electronics*, Khanna Publishers, 6th Edition, 2018.
- 4) Gopal K. Dubey, *Fundamentals of Electrical Drives*, Narosa Publishing, 2nd Edition, 2010.
- 5) Andrzej M. Trzynadlowski, *Introduction to Modern Power Electronics*, 3rd Edition, Wiley, 2015.
- 6) Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.

b) REFERENCES

- 1) Robert W. Erickson, Dragan Maksimovic, *Fundamentals of Power Electronics*, Springer, 2nd Edition, 2001.
- 2) M.D. Singh, K.B. Khanchandani, *Power Electronics*, McGraw Hill, 2nd Edition, 2007.
- 3) Bimal K. Bose, *Modern Power Electronics and AC Drives*, Pearson, 1st Edition, 2001.
- 4) R. Krishnan, *Electric Motor Drives: Modeling, Analysis, and Control*, Pearson, 1st Edition, 2001.
- 5) Chetan Singh Solanki, *Solar Photovoltaics: Fundamentals, Technologies, and Applications*, PHI Learning, 3rd Edition, 2021.
- 6) James Larminie, John Lowry, *Electric Vehicle Technology Explained*, Wiley, 2nd Edition, 2012.
- 7) Ali Emadi, Advanced Electric Drive Vehicles, CRC Press, 1st Edition, 2014.
- 8) D.P. Kothari, K.C. Singal, Rakesh Ranjan, *Renewable Energy Sources and Emerging Technologies*, PHI Learning, 2nd Edition, 2011.
- 9) Jahangir Hossain, Hemanshu Roy Pota, *Renewable Energy Integration*, Academic Press, 1st Edition, 2014.
- 10) Daniel M. Mitchell, *DC-DC Switching Regulator Analysis*, McGraw Hill, 1st Edition, 1988.
- 11) Abbasi S. A. and N. Abbasi, *Renewable Energy Sources and their Environmental Impact*, Prentice Hall of India, 2001.
- 12) Sawhney G. S., Non-Conventional Energy Resources, PHI Learning, 2012.
- 13) Abad, Gonzalo, *Power electronics and electric drives for traction applications*. USA: Wiley, 2017.

c) Additional Online Learning Resources

NPTEL Courses (IITs, IISc):

- Introduction to Power Electronics (IIT Delhi)
- Fundamentals of Electric Drives (IIT Madras)
- Energy Storage & Renewable Energy Systems (IIT Delhi)
- Non-conventional Energy Sources (IIT Madras)

v) COURSE PLAN

Module	Contents	No. of hours
I	Fundamentals of Power Processing Introduction to power processing – Elements of power electronics – Power semiconductor devices – Uncontrolled, semicontrolled, and fully controlled switches – Diode, SCR, MOSFETs, IGBTs: Principle of operation – Advantages of wide bandgap devices: SiC, GaN – Applications of power electronics in modern systems.	9
II	Power Conversion Circuits AC-DC conversion: Single-phase fully controlled SCR-based bridge rectifier with R and RL load (continuous mode only) – Principle of operation and waveforms – DC-DC Converters (Non-isolated): Buck, Boost, Buck-Boost converter – Circuit operation, voltage gain, and waveforms in continuous conduction mode – DC-AC conversion: Single-phase half and full bridge inverter with R load – Square-wave operation – Types of PWM: Single pulse, multiple pulse, sinusoidal PWM – Total harmonic distortion (THD) – AC-AC conversion: Single-phase AC voltage controller with R load – Waveforms.	9
III	Electric Drives & Industrial Applications Electric motor drives: Introduction – Block diagram of an electric drive - 4-quadrant operation of a separately excited DC motor – Circuit diagram and waveforms – Induction motor drives: Principle of operation - v/f control – Power electronics applications in industrial systems: Heating, lighting, robotics, automation – Power electronics in aerospace and railway traction systems.	9
IV	Power Processing in Renewable Energy Systems Solar photovoltaic (PV) systems: Principle of operation – Off-grid and on-grid solar systems – Block diagram – Maximum power point tracking (MPPT) – Wind energy conversion systems (WECS): Working principle – Grid integration – Energy storage technologies: Lithium-ion batteries, lead-acid batteries, supercapacitors, hydrogen fuel cells – Microgrids and smart grids: Concept and applications.	9
V	Power Processing in Power Supplies & Electric Vehicles Power supplies: Principle of operation – Linear power supply, switched- mode power supply (SMPS) – Power supply requirements: Isolation, protection, regulation – Electric vehicles (EVs): Introduction to HEV, PHEV, BEV – Block schematic of power train – Energy storage in EVs: Li-ion batteries, hydrogen fuel cells – Charging technologies: Fast charging, wireless charging – Future trends in power electronics: AI, IoT, wide bandgap devices.	9
	Total hours	45

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks

CA Exams (2 numbers) : 20 marks

Assignment/Project/Case study etc. : 15 marks

Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL31O	Electrical Drives and Control for Automation	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW

This course introduces the principles of electric drives and their role in control and automation systems. It covers the working, characteristics, and applications of DC machines, transformers, induction motors, synchronous machines, and special motors. The course also explores modern motor control techniques, including PLC-based motor control, digital controllers, and industrial automation applications. Case studies on electric drives in robotics, CNC machines, and electric vehicles provide insights into real-world applications.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the working principles, characteristics, and performance of DC machines, transformers, and induction motors.	Understand
CO2	Explain the construction, operation, and applications of synchronous machines, stepper motors, and servo motors.	Understand
СОЗ	Explain various motor control techniques, including servo control, digital controllers, and PLC-based motor control.	Understand
CO4	Explain the role of electric drives in industrial automation, robotics, and electric vehicles, supported by case studies.	Understand
CO5	Explain emerging trends in IoT-enabled motor control, AI-based predictive maintenance, and Industry 4.0 applications.	Understand

iii) SYLLABUS

DC generators – EMF equation – types of excitation – armature reaction – OCC and load characteristics – DC motors: principle, torque equation, types, characteristics, efficiency, and applications.

Transformers - Principle of operation, EMF equation, vector diagrams, losses and efficiency, OC and SC tests, equivalent circuit, auto transformers - applications.

Alternators – EMF equation – voltage regulation – synchronous motors – stepper motors – BLDC and PMSM motors – servo motors – applications in automation.

Motor control techniques – servo control – digital controllers – VFDs – DSP-based controllers – PLCs – automation case studies.

Electric drives in automation – robotics – CNC machines – electric vehicles – HVAC systems – IoT-based motor control – Industry 4.0 applications.

iv) a) TEXTBOOKS

1) P.S. Bimbhra, *Electrical Machinery*, Khanna Publishers, 7th Edition, 2011.

- 2) J.B. Gupta, *Theory and Performance of Electrical Machines*, S.K. Kataria & Sons, 15th Edition, 2021.
- 3) Hughes & Drury, *Electric Motors and Drives: Fundamentals, Types and Applications*, Elsevier, 5th Edition, 2019.
- 4) B.L. Theraja & A.K. Theraja, *A Textbook of Electrical Technology Volume II*, S. Chand, 24th Edition, 2019.
- 5) D.P. Kothari & I.J. Nagrath, *Electric Machines*, McGraw-Hill, 5th Edition, 2017.

b) REFERENCES

- 1) V.K. Mehta & Rohit Mehta, *Principles of Electrical Machines*, S. Chand, 3rd Edition, 2018
- 2) R.K. Rajput, *Electrical Machines*, Laxmi Publications, 6th Edition, 2019.
- 3) Kenjo & Sugawara, *Stepping Motors and Their Microprocessor Control*, Clarendon Press, 2nd Edition, 1994.
- 4) R. Krishnan, *Electric Motor Drives: Modeling, Analysis, and Control*, Prentice Hall, 1st Edition, 2001.
- 5) P.C. Sen, *Principles of Electric Machines and Power Electronics*, Wiley, 3rd Edition, 2013.
- 6) John W. Webb & Ronald A. Reis, *Programmable Logic Controllers: Principles and Applications*, Pearson, 5th Edition, 2014.
- 7) G.K. Dubey, *Fundamentals of Electrical Drives*, Narosa Publishing House, 2nd Edition, 2002.
- 8) Ion Boldea & Syed A. Nasar, *Electric Drives*, CRC Press, 2nd Edition, 2005.

Module	Contents	
I	DC Machines DC generators - Principle of operation - EMF equation - types of excitation - armature reaction - open circuit characteristics (OCC) and load characteristics - applications of DC generators. DC motors - Principle of operation - torque equation - types and characteristics - losses and efficiency - industrial applications.	9
II	Transformers Principle of operation – EMF equation – vector diagrams – losses and efficiency – open circuit (OC) and short circuit (SC) tests – equivalent circuit – efficiency calculations – maximum efficiency – all-day efficiency – auto transformers – industrial applications.	9
Ш	Special Motors Principle of alternators – EMF equation – voltage regulation by EMF method. Synchronous motors – principle of operation and starting methods. Stepper motors: principle of operation, types, and applications. BLDC and PMSM motors: construction, working, and applications.	9

	Servo motors and their role in automation.	
IV	Motor Control Techniques Introduction to motor controllers – servo control – digital controllers – variable frequency drives (VFDs) – DSP-based motor controllers – programmable logic controllers (PLCs) in motor control – industrial automation using motor controllers – case studies in robotics and CNC machines.	9
V	Electric Drives in Automation Applications of electric drives in robotics, CNC machines, and electric vehicles – motor control in HVAC systems – IoT-enabled motor control – AI-based predictive maintenance – Industry 4.0 applications – case studies on automation and smart manufacturing.	9
	Total hours	45

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks
CA Exams (2 numbers) : 20 marks
Assignment/Project/Case study etc. : 15 marks
Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL31P	Artificial Intelligence in Power Systems	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW

This course explores the application of AI in power systems, covering machine learning, deep learning, and data analytics for renewable energy forecasting, smart grids, predictive maintenance, and system optimization. It also addresses ethical and cybersecurity challenges in AI-driven power systems.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the fundamentals of power systems and AI techniques applicable to them.	Understand
CO2	Explain AI-based forecasting, optimization, and control strategies in power systems.	Understand
СОЗ	Explain predictive maintenance, fault detection, and real-time monitoring using AI.	Understand
CO4	Explain the role of AI in smart grids, renewable energy integration, and demand response.	Understand
CO5	Explain the ethical, security and future challenges in AI-driven power systems.	Understand

iii) SYLLABUS

Power generation, transmission, and distribution overview, AI and machine learning basics, supervised, unsupervised, and reinforcement learning, common AI algorithms.

Data acquisition, preprocessing, and feature extraction, AI/ML applications (regression, classification, clustering, time-series analysis), overview of Python libraries and simulation tools.

AI-driven forecasting for solar and wind energy, smart grids, IoT integration, energy storage optimization, demand response strategies.

Load forecasting, predictive maintenance, fault detection, real-time grid monitoring, AI for grid stability and contingency analysis.

AI-based optimization in power dispatch and unit commitment, AI-driven voltage and frequency regulation, adaptive control, ethical considerations, cybersecurity in AI applications.

iv) a) TEXTBOOKS

1) S.A. Soman, S.A. Khaparde, and Shubha Pandit, *Artificial Intelligence in Power System Analysis*, CRC Press, 2020.

2) James Momoh, *Smart Grid: Fundamentals of Design and Analysis*, Wiley-IEEE Press, 2012.

Year: 2023 (Version 1)

- 3) Amit Kumar, Om Pal, and Arun Kumar Singh, *Artificial Intelligence and Machine Learning in Power System Operations*, Springer, 2023.
- 4) Jan Machowski, Janusz W. Bialek, and James R. Bumby, *Power System Dynamics: Stability and Control*, Wiley, 2020.

b) REFERENCES

- 1) Mohammad Shahidehpour and Muwaffaq Alomoush, Restructured Electric Power Systems: Analysis of Electricity Markets with Equilibrium Models, Wiley-IEEE Press, 2001.
- 2) Bin Lu and M. Shahidehpour, *Short-Term Load Forecasting Using Stochastic Learning Networks*, IEEE Transactions on Power Systems, 2005.
- 3) Trevor Hastie, Robert Tibshirani, and Jerome Friedman, *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, Springer, 2017.
- 4) Francisco D. Bianchi, Hernán De Battista, and Ricardo J. Mantz, *Wind Turbine Control Systems: Principles, Modelling and Gain Scheduling Design*, Springer, 2006.
- 5) Research papers and IEEE Transactions on Power Systems and Smart Grids.

Module	Contents	
I	Fundamentals of Power Systems & Introduction to AI Fundamentals of Power Systems - Overview of Power Generation, Transmission, and Distribution, Overview of conventional and renewable power plants. Introduction to AI and Machine Learning - History and evolution of AI, Core concepts in machine learning: supervised, unsupervised, and reinforcement learning, Overview of common algorithms.	9
П	AI Techniques and Tools for Power Systems Applications Data Acquisition and Preprocessing: Data sources in power systems (SCADA, PMU, smart meters), Data cleaning and feature extraction techniques. AI/ML Algorithms for Energy Applications: Regression, classification, clustering, and time-series analysis, Introduction to deep learning and neural networks tailored for forecasting and classification tasks. Software Tools & Platforms: Overview of Python libraries (TensorFlow, PyTorch, Scikit-learn), Simulation and modeling platforms for power systems.	9
III	AI in Renewable Energy Integration & Smart Grids Solar and wind energy generation forecasting using AI, Handling variability and uncertainty in renewable outputs.	9

	Total hours	45
V	Optimization, Control, and Future Directions Optimization in Power Systems: Techniques for optimal power flow (OPF) and unit commitment using AI, Energy dispatch optimization and cost minimization strategies. Advanced Control Systems: AI-driven control for voltage and frequency regulation, Fault-tolerant and adaptive control systems in real-time operations. Ethical, Security, and Future Trends: Ethical considerations and cybersecurity challenges in AI applications.	9
IV	AI Applications in Power System Operations Load Forecasting and Demand Prediction: Short-term and long-term forecasting models, Case examples using time-series forecasting techniques. Predictive Maintenance and Fault Detection: Condition monitoring and anomaly detection in critical infrastructure, AI-driven approaches to predictive maintenance of equipment. Grid Stability and Real-Time Monitoring: Techniques for real-time data analytics and fault diagnosis, AI methods for managing dynamic stability and contingency analysis.	9
	Smart Grid Technologies: Role of AI in optimizing smart grid operations, Integration of IoT, advanced metering infrastructure (AMI), and 5G communications. Energy Storage and Demand Response: AI-driven energy storage management strategies, Demand response programs and optimization of energy distribution.	

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks
CA Exams (2 numbers) : 20 marks
Assignment/Project/Case study etc. : 15 marks
Total : 40 marks

viii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

INSTITUTE ELECTIVE II

Slot	Category Code	Course Code	Courses	L-T-P-J	Hours	Credit	
		23IEL42M	Architectural Lighting Design and Control	2-1-0-0	3	3	
E	IEC	23IEL42N	Electric Vehicles	3-0-0-0	3	3	
Е		IEC	23IEL42O	Process Control and Automation	3-0-0-0	3	3
		23IEL42P	Sustainable Energy Management	3-0-0-0	3	3	

DETAILED SYLLABUS INSTITUTE ELECTIVE II

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL42M	Architectural Lighting Design and Control	IEC	2-1-0-0	3	2023

i) COURSE OVERVIEW

This course explores the principles of architectural lighting design and control, covering fundamental lighting concepts, lamp technologies, and luminaire types. It includes interior, exterior, and specialized lighting designs, emphasizing energy efficiency, daylight integration, and automation using smart control systems. Students will gain insights into modern lighting techniques, sustainable solutions, and real-world applications in buildings, streets, and urban environments.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the fundamental principles of light, illumination, and various lamp technologies used in architectural lighting.	Understand
CO2	Illustrate the design principles for interior lighting, including space-to-mounting height ratio and illumination calculations for different applications.	Understand
СОЗ	Explain he requirements and techniques for outdoor and specialized lighting, including street lighting, flood lighting, and façade lighting.	Understand
CO4	Explain smart lighting control systems, including dimmers, sensors, automation techniques, and IoT-based lighting solutions.	Understand
CO5	Explain energy-efficient lighting solutions, daylight harvesting techniques, and sustainable lighting practices for modern architecture.	Understand

iii) SYLLABUS

Fundamentals of Light and Lamps – Basics of light, Luminous flux, Lumen, Luminous intensity, Lamp types – Fluorescent, LED, Sodium vapour, Mercury vapour, Metal halide, Luminaire types – Reflectors, refractors, mounting types, Fixture selection.

Interior Lighting Design – Illumination calculations, Average lumen method, Space-to-mounting height ratio, Lighting design for seminar halls, offices, residences, Staircase, corridor, and entrance lighting, Human-centric lighting.

Outdoor and Specialized Lighting – Road and street lighting, Spacing-to-mounting height ratio, Flood lighting, Façade lighting, Landscape and garden lighting, Sports lighting.

Smart and Automated Lighting Systems – Lighting control methods, Dimmers, Motion and occupancy sensors, Photo sensors, Timers, IoT-based lighting, Smart city lighting automation.

Sustainable and Energy-Efficient Lighting – Daylight factor, Daylight harvesting techniques, Energy-efficient lighting sources, Lighting control systems – Analog, digital, networked, Dimming techniques – DALI, DMX, Green building lighting strategies.

iv) a) TEXTBOOKS

1) Robert Simpson, *Lighting Control: Technology and Applications*, Taylor and Francis, 2003.

Year: 2023 (Version 1)

- 2) Craig DiLouie, Advanced Lighting Controls: Energy Savings, Productivity, Technology and Applications, CRC Press, 2005.
- 3) M K Giridharan, *Electrical System Design*, I K International Publishing House Pvt. Ltd, 2015.
- 4) B.R. Gupta, Power System Analysis and Design, S. Chand, 2020.
- 5) M.S. Rea, *The IESNA Lighting Handbook*, Illuminating Engineering Society of North America (IESNA), 10th Edition, 2011.
- 6) R. G. Hopkinson, *Lighting for Architecture*, Elsevier, 2013.
- 7) D. DiLaura, K. Houser, R. Mistrick, G. Steffy, *The Lighting Handbook*, 10th Edition, IESNA, 2011.

b) REFERENCES

- 1) D.C. Pritchard, Lighting, 6th edition, Routledge, 2014
- 2) Jack L. Lindsey, Applied Illumination Engineering, The Fairmont Press Inc.
- 3) M.A. Cayless, Lamps and Lighting, Routledge, 1996.
- 4) J.B.Murdoch, *Illumination Engineering from Edison's lamp to the laser* Macmillan Publishing company
- 5) Mohamed Boubekri, *Daylighting, Architecture and Health: Building Design Strategies* Architectural Press, UK.
- 6) Mark Karlen, James Benya, Lighting Design Basics, Wiley, 3rd Edition, 2017.
- 7) Peter Tregenza, David Loe, The Design of Lighting, Routledge, 2013.
- 8) Gary Gordon, *Interior Lighting for Designers*, Wiley, 5th Edition, 2015.
- 9) Wayne C. Turner, Energy Management Handbook, Fairmont Press, 9th Edition, 2019.

Module	Contents		
I	Fundamentals of Light and Lighting Systems Basics of light – Luminous flux, Lumen, Luminous intensity, Types of lamps – Fluorescent, LED, High & Low-pressure sodium vapour, Mercury vapour, Metal halide, Comparative analysis of lamp technologies – Energy efficiency, lifespan, color rendering, Types of luminaires – Reflectors, refractors, mounting types, Fixture selection based on applications.	9	
II	Interior Lighting Design Illumination calculations – Average lumen method, Space to mounting height ratio, Interior lighting design – Seminar halls, offices, residential spaces, Factors affecting visual comfort, glare, and aesthetics, Lighting for staircases, corridors, and entrances, Human-centric lighting – Color temperature and circadian rhythms.	9	
III	Outdoor and Specialized Lighting Road lighting design – Spacing to mounting height ratio, Requirements of good road lighting, Street lighting arrangements –	9	

	Total hours	45
V	Sustainable and Energy-Efficient Lighting Daylight factor — Daylight harvesting techniques, Benefits of daylighting, Overview of lighting control systems — Analog, digital, networked, Basics of dimming techniques — DALI, DMX for architectural lighting, Role of lighting in green buildings, Case studies on energy-efficient lighting in urban environments.	8
IV	Smart and Automated Lighting Systems Purpose of lighting control – Benefits of automation, Overview of dimmers, motion and occupancy sensors, photo sensors, and timers, Smart lighting for buildings and streets – Introduction to IoT-based lighting, Case studies on modern lighting automation in smart cities and smart homes.	9
	Pole placements and fixture types, Flood lighting design – Selection of lamps and projectors, Facade lighting for buildings, Landscape and garden lighting, Sports lighting.	

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks
CA Exams (2 numbers) : 20 marks
Assignment/Project/Case study etc. : 15 marks
Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL42N	Electric Vehicles	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW

The main goal of this course is to expose the students to the fundamental concepts and trends in electric and hybrid vehicles. It gives an insight into the drive system, battery management system and energy sources used in electric vehicles. It also intends to deliver various communication protocols.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the basic concepts of Electric and Hybrid Electric Vehicles.	Understand
CO2	Compare various configurations of Electric and Hybrid Electric drive trains based on application.	Understand
СОЗ	Explain the propulsion unit for electric and hybrid vehicles.	Understand
CO4	Compare proper energy storage systems for vehicle applications.	Understand
CO5	Compare various communication protocols and technologies used in vehicle networks.	Understand

iii) SYLLABUS

Conventional Vehicles, Basics of vehicle performance, Basic Architecture of hybrid traction, Power flow control.

Electric Propulsion unit, Configuration and control of DC motor drives, Induction Motor drives.

Energy Storage Requirements in Hybrid and Electric Vehicles, Battery, fuel cell, flywheel and supercapacitor-based energy storage.

Design of electric and hybrid electric vehicle, sizing of components.

Communication Systems, Energy Management Strategies, EV charging technologies and policies.

iv) a) TEXTBOOKS

- 1) Iqbal Husain, "Electric and Hybrid vehicles: Design Fundamentals", CRC press, 3rd Edition, 2021.
- 2) Ehsani M., "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2005.
- 3) GianfranCOPistoia, "Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market", Elsevier, 2010.
- 4) Chan C. C. and Chau K. T., "Modern Electric Vehicle Technology", Oxford University Press, 2001.

b) REFERENCES

1) James Larminie, John Lowry, "Electric Vehicle Technology Explained", 2nd Edition Wiley 2003.

Year: 2023 (Version 1)

- 2) Fuhs A. E., "Hybrid Vehicles and the Future of Personal Transportation", CRC Press, 2009.
- 3) Chris Mi, Abul Masrur M., "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", 2nd Edition, John Wiley & Sons Ltd, 2017.
- 4) Sheldon S. Williamson, "Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles", Springer, 2013.

c) ONLINE RESOURCES

- 1) NPTEL courses/Materials (IITG, IITM,IITD) Electric and Hybrid vehicles https://nptel.ac.in/courses/108/103/108103009/ (IIT Guwahati) https://nptel.ac.in/courses/108/106/108106170/ (IIT Delhi) https://nptel.ac.in/courses/108/106/108106170/ (IIT Madras)
- 2) FOC Control video lecture by Texas Instruments https://training.ti.com/kr/field-oriented-control-permanent-magnet-motors
- 3) Sensored and sensorless FOC control of PMSM motors Application notes (TI, MATLAB)
 https://www.ti.com/lit/an/sprabz0/sprabz0.pdf?ts=1620018267996&ref_url=https%253

<u>A%252F%252Fwww.google.com%252F</u> https://in.mathworks.com/help/physmod/sps/ref/pmsmfieldorientedcontrol.html

4) Electric Vehicle Conductive AC Charging System
https://dhi.nic.in/writereaddata/UploadFile/REPORT%20OF%20COMMITTEE636469
551875975520.pdf

Module	Contents	No. of hours
I	Introduction to Hybrid Electric Vehicles : History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles.	9
1	Basics of vehicle performance , vehicle power source characterization, transmission characteristics, mathematical models to describe vehicle performance.	,
II	Hybrid Electric Drive-trains : Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies.	9
11	Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies.	9
III	Electric Propulsion unit: Introduction to electric components used in hybrid and electric vehicles. Configuration and control of separately	9

	Total hours	45
V	Introduction to energy management strategies : Classification of different energy management strategies, comparison of different energy management strategies.	8
	Communications , supporting subsystems: In vehicle networks-Communication Protocols - CAN, LIN, FLEXRAY (Basics only).	
	Types of charging stations - AC Level 1 & 2, DC - Level 3 –V2G concept.	
IV	Supercapacitors and Hydrogen energy storage - Hybridization of different energy storage devices.	10
	Fuel Cell based energy storage systems- Introduction to	
	Energy Storage : Introduction to energy storage requirements in Hybrid and Electric Vehicles- Battery based energy storage systems -	
	excited DC motors, Induction Motors (block diagram representation of FOC).	

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks
CA Exams (2 numbers) : 20 marks
Assignment/Project/Case study etc. : 15 marks
Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL42O	Process Control and Automation	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW

The course aims to familiarise students with the concepts of process control. It presents basic control system concepts to enable students to model and analyse physical systems in time domain. Students will be introduced to classical controllers and advanced control strategies used in process control. The different components like actuators, control valves, PLCs and industrial robots used for process automation will also be introduced.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the basic concepts of control systems	Understand
CO2	Apply time domain techniques for response analysis of physical systems	Apply
СОЗ	Explain the concepts of system stability, types of classical controllers and advanced control strategies in process control.	Understand
CO4	Explain the architecture of Industrial Automation Systems and its components	Understand
CO5	Build simple ladder programs for operation of PLC	Apply
CO6	Discuss the use of industrial robots	Understand

iii) SYLLABUS

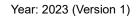
Basic concepts of control systems - Process control block diagram - Control system evaluation - Transfer function - Modeling of physical systems - Response analysis of first order and second order systems - Linearisation - Time domain and frequency domain specifications - Transportation lag - Concept of stability - On-off, P, PI and PID Controllers - Ziegler Nichol's tuning method - Advanced control strategies - Process Identification - Automation architecture - Actuators - Control Valves- Discrete state process control - Programmable Logic Controllers - Ladder programming - Industrial robots - Robot subsystems, classification and Applications.

iv) a) TEXTBOOKS

- 1) Coughanowr, D. R., LeBlanc S., *Process Systems Analysis and Control*, 3rd edition, McGraw-Hill (2008).
- 2) C. D. Johnson, *Process control Instrumentation Technology*, Pearson Education, Eighth Edition, 2006, PHI, 8th Edition, 2013.
- 3) William L. Luyben, *Process Modelling, Simulation and Control for Chemical Engineers*, Mc- Graw Hill, 2nd edition.
- 4) Surekha Bhanot, *Process Control Principles & Applications*, Oxford University Press, 2008

5) S. K. Saha, *Introduction to Robotics*, McGraw Hill Education Pvt. Ltd., 2nd edition, 2014

Year: 2023 (Version 1)


6) Norman S. Nice, Control Systems Engineering, 6th edition

b) REFERENCES

- 1) Stephanopoulos G., Chemical Process Control: An Introduction to Theory and Practice, Pearson Education (1984), PHI, 2006.
- 2) B. Wayne Bequette, *Process control: Modeling, Design and simulation*, Prentice Hall of India (P) Ltd., 2003
- 3) Huges T, *Programmable Controllers*, ISA press, 4th Edition IIIustrated, 2005.
- 4) Considine D.M., *Process Instruments and Controls Handbook*, Second Edition, McGraw, 1999.
- 5) G. Liptak, Handbook of Process Control, 1996
- 6) K. Krishnaswamy, *Process Control*, New Age International, 2007.
- 7) Patranabis D., Principles of Process Control, Tata McGraw Hill, New Delhi.

Module	Contents	No. of hours
I	Introduction to Process Control Systems Process Control principles – self regulated system, Human aided control, Automatic control, Servomechanisms, Discrete state control systems, Open loop and closed loop systems, Process Control block diagram, Control System evaluation – objective, stability, steady state and transient regulations, Evaluation criteria. Concept of transfer function, Poles and zeros, Type and order, Standard test signals.	9
II	Linear System Analysis Time domain specifications – Delay time, Rise time, Peak time, Peak Overshoot, Settling time. Linear open loop systems: Response of first order systems: Step response, impulse response. Physical examples of first order systems: Modelling of liquid level control, mixing process and heating process as first order systems, Concept of linearization of system model. Response of first order systems in series – Non-interacting and interacting systems for liquid level control. Response analysis of second order systems – Undamped, underdamped, critically damped and overdamped systems. Frequency response – Frequency domain specifications – Resonant Peak, Resonant Frequency, Bandwidth, Gain margin and Phase margin. Modelling of transportation lag	9
III	Closed-Loop Control Systems & PID Controllers Linear Closed loop systems: Closed loop system - Characteristic equation, Concept of stability, Location of poles and stability, Routh's stability test. Study of ON-OFF control, P, PI and PID controllers, Ziegler Nichol's method for PID tuning.	9

	Advanced Control strategies: Cascade control, Feedforward control, Ratio Control, Smith Predictor control, Selective control, Model Reference Adaptive Control.	
IV	Industrial Automation & Actuators Process Identification and automation: Direct methods – Time domain eyeball fitting of Step test data, Direct sine wave testing. Architecture of Industrial Automation Systems: Final control operation – Actuators and Control elements. Actuators – Construction, Principle, Advantages and disadvantages of Hydraulic, Pneumatic and Electrical actuators. Control elements – Control Valves construction and principle, Types –quick opening, linear, equal percentage, Classification	9
V	Discrete State Control & Robotics Programmable Logic Controllers – architecture and operation, Comparison of PLC & PC, Relays and Ladder Logic, Ladder Programming – Basic symbols used, Realization of AND, OR logic, Concept of latching. Introduction to Timer/Counters- Simple ladder programs Industrial Robots: Robot Subsystems – Motion, Recognition and Control subsystems, Classification of Robots – Based on work envelope, actuation and motion control methods, Industrial Applications – Material handling, welding, spray painting, machining, assembling.	9
	Total hours	45

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks

CA Exams (2 numbers) : 20 marks

Assignment/Project/Case study etc. : 15 marks

Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours

Course Code	Course Name	Category	L-T-P-J	Credit	Year of Introduction
23IEL42P	Sustainable Energy Management	IEC	3-0-0-0	3	2023

i) COURSE OVERVIEW

The course explores strategies for optimizing energy use, integrating renewable energy sources, and implementing energy efficiency measures to achieve sustainability. It covers key topics such as energy policies, conservation techniques, grid management, carbon footprint reduction, and emerging technologies like AI and smart grids. Through a multidisciplinary approach, students will gain insights into sustainable energy planning, economic considerations, and real-world case studies to prepare for energy management roles across various industries.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the principles of sustainability, energy security, and their environmental, economic, and social impacts.	Understand
CO2	Identify energy efficiency and conservation techniques for industries, buildings, and transportation.	Understand
СОЗ	Explain the integration of renewable energy sources and energy storage technologies in power systems.	Understand
CO4	Summarize key energy policies, carbon trading mechanisms, and financial strategies for sustainable energy.	Understand
CO5	Compare different energy management technologies, including smart grids, AI, and IoT applications.	Understand
CO6	Illustrate real-world case studies and emerging trends in sustainable energy management.	Understand

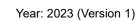
iii) SYLLABUS

Introduction to Sustainable Energy Management – Sustainability concepts, Energy demand and security, Environmental and economic aspects, Global and Indian energy scenarios, Role of energy management.

Energy Efficiency and Conservation – Energy efficiency principles, Conservation methods in industries, buildings, and transportation, Energy auditing, Smart grids, IoT and AI in energy management.

Renewable Energy Integration and Grid Management – Challenges in integrating solar, wind, hydro, and bioenergy, Hybrid energy systems, Energy storage technologies, Policies and regulations, Carbon footprint reduction.

Sustainable Energy Policies and Economics – Global and national energy policies, Energy pricing and subsidies, Carbon credits and trading, Green financing, Life cycle assessment, Corporate sustainability.


Case Studies and Future Trends – Energy-efficient buildings and industries, Smart cities, Role of energy managers, Emerging trends – Hydrogen economy, Circular energy systems, AI and blockchain in energy.

iv) a) TEXTBOOKS

- 1) G. Boyle, *Renewable Energy: Power for a Sustainable Future*, 3rd ed. Oxford, UK: Oxford University Press, 2012.
- 2) R. A. Ristinen and J. J. Kraushaar, *Energy and the Environment*, 3rd ed. Hoboken, NJ, USA: Wiley, 2016.
- 3) J. Goldemberg, *Energy: What Everyone Needs to Know*. Oxford, UK: Oxford University Press, 2012.
- 4) B. L. Capehart, W. C. Turner, and W. J. Kennedy, *Guide to Energy Management*, 8th ed. Lilburn, GA, USA: Fairmont Press, 2020.
- 5) F. Kreith and R. E. West, *Energy Efficiency and Renewable Energy Handbook*, 2nd ed. Boca Raton, FL, USA: CRC Press, 2016.
- 6) A. Thumann and W. J. Younger, *Handbook of Energy Audits*, 8th ed. Lilburn, GA, USA: Fairmont Press, 2008.
- 7) G. M. Masters, *Renewable and Efficient Electric Power Systems*, 2nd ed. Hoboken, NJ, USA: Wiley, 2013.
- 8) J. Twidell and T. Weir, *Renewable Energy Resources*, 3rd ed. New York, NY, USA: Routledge, 2015.
- 9) H. J. Wagner and J. Mathur, *Introduction to Hydro Energy Systems: Basics, Technology and Operation*. Berlin, Germany: Springer, 2019.
- 10) S. C. Bhattacharyya, *Energy Economics: Concepts, Issues, Markets, and Governance*, 2nd ed. Cham, Switzerland: Springer, 2019.
- 11) B. K. Sovacool, *Energy and Ethics: Justice and the Global Energy Challenge*. London, UK: Palgrave Macmillan, 2016.
- 12) D. Yergin, *The New Map: Energy, Climate, and the Clash of Nations*. New York, NY, USA: Penguin Press, 2020.
- 13) F. P. Sioshansi, Consumer, Prosumer, Prosumager: How Service Innovations Will Disrupt the Utility Business Model. Amsterdam, Netherlands: Elsevier, 2020.
- 14) H. Lund, Renewable Energy Systems: A Smart Energy Systems Approach to the Choice and Modeling of 100% Renewable Solutions, 2nd ed. London, UK: Academic Press, 2020.
- 15) T. M. Letcher, Future Energy: Improved, Sustainable and Clean Options for our Planet, 3rd ed. Amsterdam, Netherlands: Elsevier, 2022.

b) References

- 1) International Energy Agency (IEA), World Energy Outlook Reports, [Online]. Available: https://www.iea.org.
- 2) Intergovernmental Panel on Climate Change (IPCC), Climate Change Reports, [Online]. Available: https://www.ipcc.ch.
- 3) Bureau of Energy Efficiency (BEE), Energy Efficiency Policies and Programs, [Online]. Available: https://beeindia.gov.in.
- 4) National Renewable Energy Laboratory (NREL), *Research on Renewable Energy Technologies*, [Online]. Available: https://www.nrel.gov.
- 5) IEEE, *Smart Grids and Renewable Energy Integration*, [Online]. Available: https://www.ieee.org.

- 6) United Nations, Sustainable Development Goals (SDG 7: Affordable and Clean Energy), [Online]. Available: https://www.un.org/sustainabledevelopment/energy.
- 7) European Commission, *EU Energy Policies and Directives*, [Online]. Available: https://ec.europa.eu/energy.
- 8) World Bank, *Energy Reports and Carbon Trading Mechanisms*, [Online]. Available: https://www.worldbank.org.
- 9) World Energy Council, *Global Energy Reports and Sustainability Trends*, [Online]. Available: https://www.worldenergy.org.
- 10) Smart Energy International, Case Studies on Smart Cities and Sustainable Energy, [Online]. Available: https://www.smart-energy.com.

Module	Contents	No. of hours
I	Introduction to Sustainable Energy Management Concept of sustainability, Need for sustainable energy management, Social, environmental, and economic sustainability, Energy demand and climate change, Energy access and security, Global and Indian energy scenarios, Role of energy management in sustainable development. Energy Efficiency and Conservation Principles of energy efficiency, Energy conservation methods in industries, buildings, and transportation, Energy auditing – Types, methodologies, and case studies, Demand-side management, Waste heat recovery, Smart grids and energy optimization, Role of IoT and AI in energy management.	
II		
III	Renewable Energy Integration and Grid Management Transition to renewable energy, Challenges in large-scale renewable integration, Hybrid energy systems, Energy storage technologies – Battery storage, pumped hydro, compressed air, flywheel storage, Policy and regulatory frameworks for renewable energy, Carbon footprint assessment and reduction strategies.	9
IV	Sustainable Energy Policies and Economics Global and national energy policies, Energy pricing and subsidies, Carbon credits and trading, Green financing and investment strategies, Life cycle assessment of energy systems, Corporate social responsibility (CSR) and sustainability in energy management.	9
V	Case Studies and Future Trends in Sustainable Energy Management Case studies on energy-efficient buildings, industries, and smart cities, Role of energy managers and auditors, Future trends — Hydrogen economy, decentralized energy systems, circular economy in energy, AI and blockchain in energy management.	
	Total hours	45

vi) CONTINUOUS ASSESSMENT EVALUATION PATTERN

Attendance : 5 marks

CA Exams (2 numbers) : 20 marks

Assignment/Project/Case study etc. : 15 marks

Total : 40 marks

vii) MARK DISTRIBUTION

Total Marks	CIE	ESE	ESE Duration
100	40	60	3 hours