

CURRICULUM 2023 (Autonomous) Version 2.0

B.TECH Mechanical Engineering

BTech S5,S6 MINORS SYLLABUS

MAR BASELIOS COLLEGE OF ENGINEERING AND TECHNOLOGY Mar Ivanios Vidyanagar, Nalanchira, Thiruvananthapuram – 695 015

B.Tech MINORS

	BASKET I				BASKET II				BASKET III				
Semester													
	Supply	Chain and Log		S	Unma	anned Aerial Ve	r –	e (UAV)	Computa	Computational Design Er			
	Course	Course Name	L- T-	Credits	Course	Course Name	L- T-	Credits	Course	Course Name	L- T-	Credits	
	code	course nume	Р-	cicuits	code	course nume	Р-	cicuits	code	course nume	Р-	cicuits	
			J				J				J		
		Supply chain	3-			Introduction to	2-			Computer	2-		
S3	23MEL2MA	and Logistics	0-	3	23MEL2MC	Unmanned Aerial Vehicles	1-	3	23MEL2ME	Aided Design	1-	3	
		Management	0-			(UAV)	0-			_	0-		
			0				0				0		
	2214512140	Emerging	2-		2214512145	Basics elements			2204512045	Finite	2-		
S4	23MEL2MB	Technologies	1-	3	23MEL2MD	of UAV system	1-	3	23MEL2MF	MF Element Method	1-	3	
		in SCM	0-				0-			wethod	0-		
			0				0				0		
	23MEL3MA	Green	2-		23MEL3MC	- · · ·	2-		23MEL3ME	Computational	2-		
S5	ZSIVILLSIVIA	Logistics and	1-	3	ZSIVILLSIVIC	Design and Simulation of	1-	3	ZSIVILLSIVIL	Mechanics	1-	3	
		operations management	0-			UAV	0-				0-		
		management	0				0				0		
S 6		Digital	2-			Fabrication	2-			Optimization	2-		
	23MEL3MB	Manufacturing	1-	3	23MEL3MD	and Testing	1-	3	23MEL3MF	Techniques	1-	3	
		Transformation	0-			of UAV	0-				0-		
			0				0				0		
			0-				0-				0-		
S7	23MEL4MA	Mini Project	0-	3	23MEL4MA	Mini Project	0-	3	23MEL4MA	Mini Project	0-	3	
			6-				6-				6-		
			0				0				0		
			0-				0-				0-		
S8	23MEL4MB	Mini Project	0-	3	23MEL4MB	Mini Project	0-	3	23MEL4MB	Mini Project	0-	3	
			6-				6-				6-		
			0				0				0		

Mar Baselios College of Engineering and Technology

2023 SCHEME **S5 MINORS**

Course Code	Course Name	Category	L	Т	Ρ	J	Credit	Year of introduction
23MEL3MA	Green Logistics and Operations Management	VAC	2	1	0	0	3	2023

Objective of the course is to develop knowledge of Green Logistics and operations in practices.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain and reflect on concepts of Logistics and Supply chain management.	Understand
CO2	Critically review the impact on social, ethical and environmental issues of logistics management	Apply
CO3	Demonstrate various models and theories in relation to green logistics strategies	Understand
CO4	Explain concepts in the current business practises of logistics operations	Understand
CO5	Solve problems involving innovative strategies and technologies for future operations of an organisation	Apply

iii) SYLLABUS

Fundamentals of Logistics and Supply chain management: Basic concepts of logistics and Supply chain, Introduction to Green Logistics: Concept Environmental Impact of Logistics, Protocols for Green Logistics, Green Logistics Strategies Towards Green logistics: Challenges

Measuring impact of Logistics: Social impact. Labor rights and workplace safety -Impact on communities and urban spaces Ethical impact - Supply chain transparency-Corruption and ethical sourcing- Data privacy in logistics, and environmental impactmissions and climate change.. Case studies - Amazon, Maersk, FedEx: sustainability and ethical practices.

Green logistics strategies: Designing Green Operations Supply Chain: Distance reduction, Model shifts, cleaner equipment, Circular supply chains in action. Green logistics and reverse logistics- Sustainable packaging and waste management.

Business operations and Practices: A green framework - 3PL issues in sustainable supply chain. Reverse Logistics, Lean Supply Chain, Green Supply Chain, Responsive and Efficient Supply Chains

Innovative Technologies and Green policy trends: Developing a green smart factory. Product Modularity and the Design of Closed Loop Supply Chains. Government regulations and ESG compliance - Technological innovations (AI, IoT, blockchain)-Building a sustainable logistics strategy.

iv) a) TEXTBOOKS

- 1. Luca Urciuoli, Peerasit Patanakul, Peter Gustavsson (Editors), "Sustainable Logistics: A Multidisciplinary Perspective", Springer, 2020.
- 2. Martin Christopher, "Logistics and Supply Chain Management", Pearson Education, 2016.
- 3. David B. Grant, Alexander Trautrims, Chee Yew Wong, "Sustainable Logistics and Supply Chain Management", Kogan Page, 2017

b) **REFERENCES**

- 1. Joseph Sarkis (Editor), "Greening the Supply Chain", Springer, 2006.
- 2. Seyed Mohammadreza Davoodi, Aydin Azizi, "Green Supply Chain: Fundamentals and Applications", Nova Science Publishers, 2020
- 3. Srivastava Samir K., R. Srivastava, "Green Supply Chain Management: A Strategy Perspective", Springer, 2020

v) COURSE PLAN

Module	Contents	No. of hours
I	Fundamentals of Logistics and Supply chain management : : Basic concepts of logistics and Supply chain, Introduction to Green Logistics: Concept Environmental Impact of Logistics , Protocols for Green Logistics , Green Logistics Strategies Towards Green logistics: Challenges.	9
II	Measuring impact of Logistics: Social impact. Labor rights and workplace safety - Impact on communities and urban spaces Ethical impact - Supply chain transparency- Corruption and ethical sourcing- Data privacy in logistics, and environmental impact- missions and climate change Case studies - Amazon, Maersk, FedEx: sustainability and ethical practices.	9
	Green logistics strategies: Designing Green Operations Supply Chain: Distance reduction, Model shifts, cleaner equipment, Circular supply chains in action. Green logistics and reverse logistics- Sustainable packaging and waste management.	11
IV	Business operations and Practices : A green framework - 3PL issues in sustainable supply chain. Reverse Logistics, Lean Supply Chain, Green Supply Chain, Responsive and Efficient Supply Chains.	7
V	Innovative Technologies and Green policy trends: Developing a green smart factory. Product Modularity and the Design of Closed	9

sustainable logistics strategy.	Total	45
Loop Supply Chains. Government regulations and ESG comp Technological innovations (AI, IoT, blockchain)- Building a	oliance -	

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination – 40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

viii CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	т	Р	J	Credit	Year of introduction
23MEL3MC	DESIGN AND SIMULATION OF UAV	VAC	2	1	0	0	3	2023

The course guides participants through the principles of UAV design. Utilizing advanced simulation tools, students will learn to optimize UAV performance and reliability. By the end of the course, participants will be equipped with practical skills to design and simulate parts of an UAV for various applications.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain geometric modelling of an unmanned aerial vehicle parts.	Understand
CO2	Apply modelling software to develop geometric models of UAV parts.	Apply
CO3	Explain the properties, load and performance of structural framework design.	Understand
CO4	Explain the flow around an unmanned aerial systems and its flow properties.	Understand
CO5	Make use of structural and flow analysis tools to determine the impact of flow around UAV systems.	Apply

iii) SYLLABUS

Conceptual Design of UAV systems. Tools and physical features. Wing Design and basic design parameters.Geometric modelling of parts of an unmanned aerial vehicles using modelling tools.

Introduction to modeling and design tools. Creating and Managing Projects. Basic modelling operations - sketching: Drawing profiles for UAV components.

Types of Simulation. Structural analysis of UAV systems - Tools and Analysis techniques, materials and structures. Structural Loads on UAVs. Methods, parameters and processing steps.

Flow Analysis. Computational Fluid Dynamics – Tools and processes. Importance of Flow Analysis - characteristics and performance features. Analysis of flow over UAV under varying geometric and flow parameters.

Analysis and optimization. Key Considerations and Performance Metrics. Design and operational effectiveness.

iv) a) TEXTBOOKS

- 1. John D. Anderson, Introduction to Flight, McGraw-Hill Higher Education, 2015.
- 2. Richard Cozzens, CATIA V5 Workbook Release V5-6R2013, 2013.
- 3. Daniel P. Raymer, Aircraft Design : A Conceptual Approach , American Institute of Aeronautics & Astronautics, 2018.
- 4. Versteeg, H. Pearson, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2022.

b) **REFERENCES**

- 1. Anderson, J., Computational Fluid Dynamics, 2019.
- 2. Reg Austin, Unmanned Aircraft Systems: UAVs Design Development and Deployment, Wiley, 2008.
- 3. Russell M. Cummings, William H. Mason, Scott A. Morton, and David R. McDaniel, Applied computational aerodynamics: a modern engineering approach, Cambridge University Press, 2015.

v) COURSE PLAN

Module	Contents	No. of hours					
I	Conceptual Design of UAV systems. Introduction to geometric modelling – Tools and physical features. Introduction to modelling different parts of UAVs - Wing Design and basic design parameters. Aerofoil Selection, Configuration Layout, Weight distribution.						
II	Introduction to modeling and design tools. User Interface – Toolbars, menus, workbenches. Creating and Managing Projects – Setting up a workspace for UAV design. Basic modelling operations - sketching: Drawing profiles for UAV components. Airframe & Wing Structure - Aerofoil Modelling and Assembly.	8					
111	Types of Simulation. Structural analysis of UAV systems - Tools and Analysis techniques, materials and structures. Structural Loads on UAVs. Methods, parameters and processing steps. Numerical problems.						
IV	Fluid Properties and Fluid Statics and Kinematics, Types of flows. Computational Fluid Dynamics – Tools and processes. Numerical problems. Importance of Flow Analysis - characteristics and performance features. Aerodynamics case studies. Analysis of flow over UAV under varying geometric and flow parameters.	10					
v	Conduct studies of structural and flow analysis. Iterative Design Process. Challenges and Limitations. Emerging Technologies and Future Trends.	9					

 optimization - Key Considerations and Performance Metrics. Design and operational effectiveness. Energy Efficiency Studies.	45
Introduction to simulation testing. Analysis of UAV for geometric	

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination - 40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	Т	Ρ	J	Credit	Year of introduction
23MEL3ME	Computational Mechanics	VAC	2	1	0	0	3	2023

Objective of the course is to develop the ability to model, analyze, and solve problems of mechanical systems using numerical methods and computational tools.

ii COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the numerical methods to develop computational models of mechanical systems and their behaviour.	Understand
CO2	Make use of the constitutive relations for mechanical systems in motion or at rest, including particles and rigid bodies, to solve real world problems.	Apply
CO3	Make use of computational simulations for the informed decisions on mechanical system design and optimization.	Apply
CO4	Solve static and dynamic problems of mechanical systems using a commercial multibody dynamics and motion analysis software ADAMS.	Apply

iii) SYLLABUS

Kinematics and statics: Fundamentals of Mechanics and Motion Analysis-Introduction to statics and equilibrium, Free body diagrams, Equilibrium of particles and rigid bodies, Computational aspects of solving kinematics and statics problems of real-world systems.

Introduction to kinetics: Fundamentals of kinetics and their application to mechanical systems. Computational aspects of solving problems on kinetics of particles.

Kinetics of Rigid bodies: Fundamentals of kinetics and their application on rigid bodies, Introduction to Euler-Lagrange and Newton-Euler equations for solving rigid body dynamics of simple mechanical systems.

Introduction to multibody dynamics and motion analysis software: Introduction to commercial simulation tool (ADAMS), Basics of model buildings tools and techniques, ADAMS model from CAD solid model geometry.

Static equilibrium and Natural Frequency Analysis: Modelling and analysis of one degree of freedom of pendulum-pendulum frequency, spring mass damper system, force in spring damper at static equilibrium and natural frequency.

iv) a) TEXTBOOKS

1. B. S. Choo and S. H. Han ,"Introduction to Computational Mechanics" -

2005, 1st edition

- 2. J.L. Meriam and L.G. Kraige, "Engineering Mechanics: Dynamics" 2016, 8th edition
- 3. J.L. Meriam and L.G. Kraige, "Engineering Mechanics: Statics"- 2016, 8th edition
- 4. Ferdinand P. Beer and E. Russell Johnston Jr, "Vector Mechanics for Engineers: Statics and Dynamics"- 2015, 11th edition

b) **REFERENCES**

- 1. David Morin, "Introduction to Classical Mechanics: With Problems and Solutions"- 2008, 1st edition
- 2. James M. Gere and Barry J. Goodno, "Mechanics of Materials"- 2018, 9th edition
- 3. Irving H. Shames, "Engineering Mechanics: Statics and Dynamics"–2002, 4th edition

v)	COURSE PLAN
----	-------------

Module	Contents	No. of hours
I	Kinematics and statics: Position, velocity, and acceleration of particles, Newton's laws of motion, Work and energy, Rigid body kinematics, Translations and Rotations, Alternate representations of Rigid body Rotation - Rotation matrices, Euler angles, Axis-angle representations. Introduction to statics and equilibrium, Free body diagrams, Equilibrium of particles and rigid bodies, Computational aspects of solving kinematics and statics problems of real-world systems.	9
II	Introduction to kinetics : Cross product of two vectors, Inertial and Non-Inertial frame of reference, Linear momentum, Center of mass, Coriolis, Inertial and Centripetal forces, Acceleration in polar coordinates, Angular velocity, Angular momentum and Torque on particles, Computational aspects of solving kinetics problems of particles.	9
111	Kinetics of Rigid bodies : Two particle system angular momentum, Inertia matrix, Moment and product of inertia, Principal axes theorem, Principal axes as eigenvector of Inertia matrix, Parallel axes theorem, Computational aspects of solving kinetics problems of particles, Introduction to Euler-Lagrange and Newton-Euler equations for solving rigid body dynamics. Euler-Lagrange equation derivation using one dimensional point mass example, Application of Euler Lagrange equation for solving dynamics of simple mechanical systems.	9

IV	Introduction to ADAMS : Introduction to simulation tool (ADAMS), Basics of model buildings tools and techniques, ADAMS model from CAD solid model geometry.	9
V	Static equilibrium and Natural Frequency Analysis : Modelling and analysis of one degree of freedom of pendulum-pendulum frequency, spring mass damper system, force in spring damper at static equilibrium and natural frequency.	9
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination – 40: 60

Continuous Assessment

Total Continuous Assessment		40 marks
		10
Assessment through Tests	:	20 marks
Assignments	:	15 marks
Attendance	:	5 marks

viii CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

B. Tech Mechanical Engineering Syllabus (Autonomous) 2023

2023 SCHEME S6 MINORS

Course Code	Course Name	Category	L	т	Ρ	J	Credit	Year of introduction
23MEL3MB	Digital Manufacturing Transformation	VAC	2	1	0	0	3	2023

Objective of the course is to develop knowledge of digital transformation practices in Manufacturing industries.

ii COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the theoretical aspects of Digital Manufacturing	Understand
CO2	Explain the Additive Technologies in Digital manufacturing	Understand
CO3	Illustrate Product Lifecycle Management and reverse engineering	Understand
CO4	Explain the application of Value chain management	Understand
CO5	Solve problems involving in creation of a smart factory using modellers and address the challenges.	Apply

iii) SYLLABUS

Introduction to Digital Manufacturing: Definition of digital manufacturing, Historical perspective on industrial production and outlook, Industrial Revolutions, Industry 4.0, Cyber physical system, Factory of the future, Operation Mode and Architecture of Digital Manufacturing System.

Additive Manufacturing for Digital Transformation: Introduction to additive manufacturing, Additive manufacturing process chain, Material selection, Manufacturing, Post processing, Additive manufacturing technologies and processes, Vat photo polymerization, Material extrusion, Material jetting, Sheet lamination, Powder bed fusion, Binder jetting, Planning and slicing additive manufacturing software.

Reverse Engineering: Product Lifecycle Management and Value Chain Management Need, Reverse engineering process, Reverse engineering hardware and software, Geometric model development. Computer Aided Manufacturing: Component modelling, Machine and tool selection, Defining process and parameters, Tool path generation, Simulation, Post processing.

Value Chain Management in Digital transformation: Industry 4.0 Adoption in India, Six design Principles in Industry 4.0, , Comparison of Models and adaptability in Digital Manufacturing, Digital Resource Modelling and Simulation - Factory Model, Digital Manufacturing Planning process- ERP and Value Chain Management, Validation & Virtual Commissioning.

Concept Modelers, Translators and 3D Printing Software: Introduction, Principle, Materials used in 3D printing Benefits & Challenges in 3D printing. Thermo jet printer, Sander's model market, 3- D printer, Genisys Xs printer, JP system 5, object

quadra System-Rapid proto typing. Standard interface to convey geometric description from CAD package to Rapid prototyping system, Stereo Lithography (STL)file, Initial Graphics Exchange Specification (IGES)file, STEP file.

iv) a) TEXTBOOKS

- 1. Alp Ustundag, Emre Cevikcan (Editors), "Industry 4.0: Managing the Digital Transformation", Springer, 2018.
- 2. Ian Gibson, David W. Rosen, Brent Stucker, Mahyar Khorasani, "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", Springer, 2021.
- 3. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2016

b) **REFERENCES**

- 1. Amit Bandyopadhyay, Susmita Bose (Editors), "Additive Manufacturing", CRC Press, 2015.
- 2. Rajkumar Roy, Essam Shehab, Jennifer Harding (Editors), "Product Lifecycle Management: Driving the Next Generation of Lean Thinking", Springer, 2008.
- 3. Wego Wang, *"Reverse Engineering: Technology of Reinvention"*, CRC Press, 2010.

v) COURSE PLAN

Module	Contents	No. of hours
1	Introduction to Digital Manufacturing: Definition of digital manufacturing, Historical perspective on industrial production and outlook, Industrial Revolutions, Industry 4.0, Cyber physical system, Factory of the future, Operation Mode and Architecture of Digital Manufacturing System.	9
II	Additive Manufacturing for Digital Transformation: Introduction to additive manufacturing, Additive manufacturing process chain, Material selection, Manufacturing, Post processing, Additive manufacturing technologies and processes, Vat photo polymerization, Material extrusion, Material jetting, Sheet lamination, Powder bed fusion, Binder jetting, Planning and slicing additive manufacturing software.	9
	Reverse Engineering: Product Lifecycle Management and Value Chain Management Need, Reverse engineering process, Reverse engineering hardware and software, Geometric model development. Computer Aided Manufacturing: Component modelling, Machine and tool selection, Defining process and parameters, Tool path generation, Simulation, Post processing.	11
IV	Value Chain Management in Digital transformation: Industry 4.0 Adoption in India, Six design Principles in Industry 4.0, , Comparison of Models and adaptability in Digital Manufacturing, Digital Resource Modelling and Simulation - Factory Model, Digital	7

	Manufacturing Planning process- ERP and Value Chain Management, Validation & Virtual Commissioning	
V	Concept Modelers, Translators and 3D Printing Software: Introduction, Principle, Materials used in 3D printing Benefits & Challenges in 3D printing. Thermo jet printer, Sander's model market, 3- D printer, Genisys Xs printer, JP system 5, object quadra System-Rapid proto typing. Standard interface to convey geometric description from CAD package to Rapid prototyping system, Stereo Lithography (STL)file, Initial Graphics Exchange Specification (IGES)file, STEP file.	9
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

viii CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	т	Ρ	J	Credit	Year of introduction
23MEL3MD	FABRICATION AND TESTING OF UAV	VAC	2	1	0	0	3	2023

This course aims to provide students with a comprehensive understanding of the design, manufacturing, and testing of UAV (Unmanned Aerial Vehicle) components. By the end of this course, students will leave equipped with the necessary skills to contribute to the UAV industry.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Identify and apply the steps, materials, methods involved in manufacturing of UAV systems.	Apply
CO2	Explain various integration techniques for UAV subsystem assembly.	Understand
CO3	Apply appropriate testing procedures to assess UAV performance and ensure compliance with design specifications.	Apply
CO4	Apply different mission objectives and operational strategies for successful flight execution.	Apply
CO5	Explain the fundamental rules and best practices related to UAV flight safety and maintenance.	Understand

iii) SYLLABUS

Manufacturing techniques - Traditional Manufacturing Methods, Design considerations, Steps in additive manufacturing (AM), Classification and Advantages, Types of materials for AM and 3D printing.

Introduction to UAV assembly and subsystems. Integrating systems - circuits, tools for assembly, functionality and positioning. Integration Techniques. Prototype Development. Essential features and indications. Working stages and modes.

Testing Methodologies. Introduction to test equipment and instrumentation, Ground and flight tests. Testing plan and procedure.

Flight operations - UAS simulators - purpose and types, real flight. Basics of piloting and maneuvering. FPV and Non-FPV systems. Prototype demonstration. Mission Planning and execution. Flight scenarios, constraints, obstacle avoidance and fail-safe mechanisms, integrating feedback.

Maintenance of UAV systems - Debugging and repairing. Operation of UAV systems for different applications. Flight safety rules and types.

iv) a) TEXTBOOKS

- 1. Reg Austin, Unmanned Aircraft Systems: UAVs Design Development and Deployment, Wiley, 2008.
- 2. F.N. Stoliker, Introduction to Flight Test Engineering, RTO Publications, 2005.
- 3. Daniel P. Raymer, Aircraft Design : A Conceptual Approach, American Institute of Aeronautics & Astronautics, 2018.

b) **REFERENCES**

- 1. A. R. Jha, Theory, Design, and Applications of Unmanned Aerial Vehicles, CRC Press, 2016.
- 2. Franck Cazaurang, Kelly Cohen and Manish Kumar, Multi-Rotor Platform based UAV Systems, ISTE Press Elsevier, 2020.

v) COURSE PLAN

Module	Contents	No. of hours
I	Manufacturing techniques - Traditional Manufacturing Methods, Design considerations, Steps in additive manufacturing (AM), Classification and Advantages, Types of materials for AM and 3D printing. Design to development - Detailed sizing, Case studies on UAV systems. Sustainable production.	10
11	Introduction to UAV assembly and subsystems. Integrating systems - circuits, tools for assembly, functionality and positioning. Integration Techniques. Prototype Development. Essential features and indications. Working stages and modes.	8
111	Testing Methodologies, Types - functional, environmental, and structural. Introduction to test equipment and instrumentation, Ground and flight tests. Testing plan and procedure. Performance Assessment - Methods for Measuring Performance, Data Collection and Analysis Techniques.	10
IV	Flight operations - Pre and Post flight. UAS simulators - purpose and types, real flight. Basics of piloting and maneuvering. FPV and Non-FPV systems. Prototype demonstration. Mission Planning and execution. Flight scenarios, constraints, obstacle avoidance and fail-safe mechanisms, integrating feedback.	9
v	Maintenance of UAV systems - Debugging and repairing. Operation of UAV systems for different applications. Flight safety rules and types. Emerging trends, Future of unmanned aerial vehicles. Legal considerations - Negligence, liability, privacy etc.	8
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination - 40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	т	Ρ	J	Credit	Year of introduction
23MEL3MF	Optimization Techniques	VAC	2	1	0	0	3	2023

This course provides the basic knowledge of optimization techniques and achieving optimal output. It also explores design optimization methods aimed at obtaining the best results in comparison to conventional design approaches.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Apply the appropriate optimization method that is more efficient to the problem at hand.	Apply
CO2	Solve constrained and unconstrained optimization problems.	Apply
CO3	Apply the linear and nonlinear programming methods of optimization.	Apply
CO4	Apply the use of computational tools for solving optimization problems.	Apply
CO5	Explain the different intelligent optimization techniques.	Understand

iii) SYLLABUS

Introduction to Optimization: Engineering application of Optimization, Optimal Problem formulation.

Optimization algorithms for solving unconstrained optimization problems.

Optimum design concepts: Linear programming methods for optimum design, Application of LPP models in design and manufacturing. Optimization algorithms for solving unconstrained optimization problems – Gradient based method:

Optimization algorithms for solving constrained optimization problems. Applications.

Intelligent optimization techniques.

iv) a) TEXTBOOKS

- 1. Singiresu.S.Rao., "Engineering Optimization Theory and Practice" New Age International (P) Limited, Publishers 1996.
- 2. Johnson Ray.C., "Optimum design of mechanical elements" Wiley, John & Sons, 1990

b) **REFERENCES**

1. Goldberg, DE "Genetic algorithms in search, Optimization and Machine: Barmen, Addison – Wesely, New York 1989.

2. Saravanan.R, "Manufacturing Optimization through intelligent techniques", Taylor and Francis Publications, CRC Press. 2006.

v) COURSE PLAN

Module	Contents	No. of hours
I	Introduction, Formulation of optimization problems, examples Classification of optimization problems, Properties of objective function Maxima, minima and points of inflection, Concavity and convexity of one and two variable functions, Taylor's theorem: single variable and multi variable function. Hessian matrix, Unconstrained Optimization of multi variable functions, Lagrange multiplier method.	9
11	Single variable optimization: optimality criteria, Exhaustive search and dichotomous search. Region elimination methods- Fibonacci search and Golden section search, Gradient based methods- Newton Raphson method, Secant method.	9
111	Multivariable optimization: optimality criteria, Unidirectional Search, Direct search method-Simplex search method, Powell's conjugate direction method. Gradient based methods- Method of steepest ascent/ steepest descent, conjugate gradient method.	9
IV	Constrained optimization: Kuhn Tucker conditions, Transformation method- Penalty function method. Linearized search-Frank-Wolfe method. Dynamic programming; Integer programming. Implementing optimization algorithm using Matlab / Programming.	9
V	Intelligent Optimization Techniques Introduction to Intelligent Optimization, Genetic Algorithm: Types of reproduction operators, crossover & mutation, Simulated Annealing Algorithm, Particle Swarm Optimization (PSO), Genetic Programming (GP): Principles of genetic programming, terminal sets, functional sets, differences between GA & GP, random population generation, solving differential equations using GP.	9
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination - 40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

INSTITUTE ELECTIVES – 2023 SCHEME

BASKET 1

COURSE CODE	COURSE NAME	L-T-P-J	CREDITS
23IEL31Q	3D Printing	3-0-0-0	3
23IEL31R	Maintenance Engineering	3-0-0-0	3
23IEL31S	Renewable and Non- conventional energy engineering	3-0-0-0	3
23IEL31T	Sports Engineering and Management	3-0-0-0	3

BASKET 2

COURSE CODE	COURSE NAME	L-T-P-J	CREDITS
23IEL42Q	Industrial Engineering	3-0-0-0	3
23IEL42R	Sustainable Manufacturing	3-0-0-0	3
23IEL42S	Marketing Management for Engineers	3-0-0-0	3
23IEL42T	Alternate Fuels	3-0-0-0	3

BASKET 1 INSTITUTE ELECTIVES

Course Code	Course Name	Category	L	Т	Р	J	Credit	Year of Introduction
23IEL31Q	3D Printing	IEC	3	0	0	0	3	2023

The objective of this course is to impart students to the fundamentals of various 3D Printing Techniques for application to various industrial needs. The course also intends to convey an idea about STL formats, slicing technique and manufacturing based on liquid, powder and solid based techniques.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

	Course Outcomes			
CO 1	Explain about the prototyping fundamentals, materials used and the procedure of 3D printing.	Understand		
CO 2	Demonstrate the various 3D printing techniques and their advantages and applications.	Understand		
CO 3	Explain the aspects of data conversion and post processing in 3D printing.	Understand		
CO4	Explain about slicing operation and its related parameters.	Understand		
CO5	Make use of any slicing software to develop 3D print models.	Apply		

iii) SYLLABUS

Introduction: Prototyping fundamentals. Introduction to 3D printing, its historical development, advantages. Commonly used terms, process chain, 3D modelling

Data Conversion, and transmission, Checking and preparing, Building, Post processing, RP data formats, Classification of 3D printing process, Applications to various fields.

Stereo lithography apparatus (SLA): Models and specifications, process, working principle, photopolymers, photo polymerization. Solid ground curing (SGC): Models and specifications.

Laminated object manufacturing (LOM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies.

Fused Deposition Modeling (FDM): Models and specifications, Process, Working principle, Applications, Advantages and disadvantages, Case studies.

Slicing: Slicing parameters, Slicing software CURA, 3D print model development.

iv) a) TEXTBOOKS

1. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2nd Ed, 2014.

2. D.T. Pham and S.S. Dimov, "Rapid Manufacturing", Springer, 2001

b) REFERENCES

- 1. Paul F. Jacobs, "Rapid Prototyping and Manufacturing"-, ASME Press, 1996
- 2. Chua C.K., Leong K.F. and LIM C.S Rapid prototyping: Principles an Applications, World Scientific publications, 3rdEd., 2010

v) COURSE PLAN

Module	Contents	Hours
Ι	Introduction to 3D printing: Importance of 3D printing, Basic principle of 3D printing- Procedure of product development in 3D printing. Classification of 3D printing processes, Materials used in 3D printing Benefits & Challenges in 3D printing	
II	Principle, process, advantages and applications of: Fused Deposition Modelling (FDM).Principle, process, advantages and applications of: Selective Laser Sintering (SLS), Stereo Lithography (SLA), Principle, process, advantages and applications of: Laser Engineering Net Shaping (LENS).Principle, process, advantages and applications of: Laminated Object Manufacturing (LOM), Electron Beam Melting (EBM).	9
III	Basic Concept — Digitization techniques — Model Reconstruction. Data Processing for Additive Manufacturing Technology CAD model preparation — Part Orientation and support generation. Model Slicing —Tool path Generation. Introduction to slicing softwares.	0
IV	Principle, process, advantages and applications of: Selection Laser Melting (SLM), Jetting, 3D Printing Principle, process, advantages and applications of 3D Printing.STL Format, STL File Problems, consequence of building valid and invalid tessellated models.STL file Repairs: Generic Solution, other Translators, Newly Proposed Formats.	9
V	Eight Steps in Additive Manufacture, Variations from One 3D Printing Machine to Another, Metal Systems, Maintenance of Equipment, Materials Handling Issues, Design for 3D PRINTING. Introduction to Photopolymerization Processes: Photopolymerization Materials, Reaction Rates, Vector Scan SL, SL Resin Curing Process, SL Scan Patterns, Vector Scan Micro stereolithography, Mask Projection Photopolymerization Technologies and Processes, Two-Photon SL. Development of 3D print models using slicing software (Assignments only).	9
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination - 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks

End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	Т	Р	J	Credit	Year of Introduction
23IEL31R	Maintenance Engineering	IEC	3	0	0	0	3	2023

The objective of this course is to enable the student to understand the principles, functions and practices of maintenance activities. This course also intends to introduce the different maintenance categories and failure analysis tools.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

	Course Outcomes	Learning Level
CO 1	Explain about the fundamentals of maintenance engineering.	Understand
CO 2	Explain about the different types of maintenance strategies and maintenance costs.	Understand
CO 3	Illustrate various aspects of lubricant monitoring and condition monitoring.	Understand
CO4	Explain about reliability centered maintenance, failure modes and failure analysis.	Understand
CO5	Utilize case studies to identify the condition based maintenance required in various scenarios.	Apply

iii) SYLLABUS

Fundamentals of maintenance engineering: Maintenance Engineering, Its Importance in Material & Energy Conservation, Inventory Control, Productivity, Safety, Pollution Control, etc. Safety Regulations

Types of maintenance, Breakdown, Preventive & Predictive Maintenance, Comparison, Advantages & Disadvantages, Total productive maintenance (TPM), TPM and terotechnology.

Lubrication monitoring: Lubricant monitoring – components and techniques – filter debris analysis & filter grams. Ferrography – spectroscopic oil analysis program.

Condition based maintenance: Performance monitoring - visual, tactile and aural monitoring -

leakage monitoring. Temperature monitoring. Case studies

Reliability testing and failure analysis: Reliability centred maintenance (RCM) – steps – flow diagram basic guidelines. Defect and failure, basics of failures, failure generation, failure analysis.

iv) a) TEXTBOOKS

1. Gupta A. K., Reliability, Maintenance and Safety Engineering, University Science Press, New Delhi, 2009.

2. Rao S. S., Reliability-Based Design, McGraw-Hill, Inc, New York, 1992.

b) REFERENCES

- 1. Davies, Handbook of Condition Monitoring, Chapman & Hall, 1996.
- 2. Garg M. R., Industrial Maintenance, S. Chand & Co., 1986.

v) COURSE PLAN

Module	Contents	Hours
Ι	Fundamentals of Maintenance Engineering, Maintenance Engineering, Its Importance in Material & Energy Conservation, Inventory Control, Productivity, Safety, Pollution Control, etc. Principle, benefits and effects of maintenance. Inter relationship between productivity, quality, reliability and maintainability. Maintenance productivity. Computer-aided maintenance management system (CMMS) –functions, applications and advantages of CMMS.	9
П	Types of Maintenance Strategies, Planned and Unplanned Maintenance, Breakdown, Preventive & Predictive Maintenance, Comparison, Advantages & Disadvantages, Total productive maintenance (TPM), TPM and terotechnology, Maintenance Scheduling, Spare Part Management, Inventory Control, Organization of Maintenance Department. Maintenance costs – classification of maintenance costs – maintenance cost analysis – cost effectiveness analysis.	9
III	Friction Wear and Lubrication, Friction & Wear Mechanisms, Prevention of Wear, Types of Lubrication Mechanisms, Lubrication Processes. Lubricants- Types, General and Special Purpose, Additives, Testing of Lubricants, Degradation of Lubricants, Seal & Packing. Lubricant monitoring – components and techniques – filter debris analysis & filter grams. Ferrography – spectroscopic oil analysis program.	9
IV	Condition based maintenance and condition monitoring – monitoring systems. Performance monitoring – visual, tactile and aural monitoring – leakage monitoring. Temperature monitoring – thermography – advantages. smell/odour monitoring. Case studies of condition based maintenance (Assignments or Industrial visit only).	9
V	Reliability centred maintenance (RCM) – steps – flow diagram basic guidelines. Defect and failure – definitions – basics of failures – failure generation – failure analysis. Fault tree analysis (FTA). Failure modes and effects analysis (FMEA). Failure mode effect criticality analysis (FMECA). Measurement of maintenance work: Mean time to repair, Median time to repair, Mean system down time, Mean time to restore.	9
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination - 40 : 60

:

Continuous Assessment Attendance

5 marks

Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	Т	Р	J	Credit	Year of Introduction
23IEL31S	Renewable and Non Conventional Energy Engineering	IEC	3	0	0	0	3	2023

Students will be able to identify and explain various renewable energy sources and their working principles. They will gain an understanding of the design and operation of renewable energy systems and explore their real-world applications. Students will also develop the ability to critically compare different renewable energy technologies and recommend the most appropriate solutions based on technical, environmental, and local conditions.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO 1	Explain renewable energy sources and their significance in current energy status of our country, working and types of solar energy collectors	Understand
CO 2	Design solar collectors for various heating applications and measurement of solar radiation at a location	Apply
CO 3	Explain the working of different nuclear reactors.	Understand
CO 4	Explain the different types of wind power machines and the working principles	Understand
CO 5	Explain the ocean energy and geothermal energy harnessing technology	Understand
CO6	Explain biomass energy conversion devices and economic analysis of energy production	Understand

iii) SYLLABUS

The Energy Scenario- Commercial energy sources -World's production and reserves

India's Production and reserves, Energy Alternatives, Need for alternatives. Solar Energy collectors- Solar thermal collectors -Flat plate collectors -Solar concentrators.

Wind Energy- classification of wind turbines and power performance curve, Energy in wind, calculation of energy content, Power coefficients, Betz limit theory, tip speed ratio, the solidity of turbines and power control strategies.

Nuclear energy - review of elementary nuclear physics, Boiling water reactor, structural materials, nuclear fuel, Reactor heat removal, Safety, and waste disposal.

Ocean Energy – Devices for Wave Energy Conversion, Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation.

Geothermal energy- Introduction, hot dry rock resources, magma resources, vapor, and liquid dominated systems, binary cycle, advantages and disadvantages

B.Tech Mechanical Engineering Syllabus (Autonomous) 2023

Biomass Energy - Biomass conversion technologies –Bio Gasification, Bioethanol, Biodiesel, Biogas production from waste biomass. Economic Analysis – Initial and annual cost, basic definitions, present worth calculations

iv) (a) TEXT BOOKS

- 1) S P Sukhatme , J K Nayak, Solar Energy: Principles of Thermal Collection and storage Mc Graw Hill ,2015
- 2) Tiwari G N, Ghosal M K ,Fundamentals of renewable energy sources, Alpha Science International Ltd.,2007
- 3) Jefferson W Tester et.a., Sustainable Energy Choosing among options, PHI, 2006
- 4) S. Glasstone and A. Sesonske, Nuclear Reactor Engineering, D. Van Nostrand Company, INC. 1967.

(b) **REFERENCES**

- 1) D.P. Kothari Renewable energy resources and emerging technologies, Prentice Hall of India Pvt. Ltd,2011
- 2) Mehmet KanoğluYunus A. Çengel John M. Cimbala , Fundamentals and Applications of Renewable Energy, Mc Graw Hill ,2019

Module	Contents	No. of hours
Ι	The Energy Scenario- Commercial energy sources -World's production and reserves- India' Production and reserves, Energy Alternatives, Need for alternatives.	9
	Principles of solar radiation : Solar radiation outside the earth's atmosphere and at the earth's surface , Solar Constant, Basic Sun-Earth Angles, Instruments for measuring solar radiation and sunshine , Solar radiation data	9
П	Solar Energy collectors: Solar thermal collectors -Flat plate collectors –Solar concentrators –Solar Air Heaters, Solar pond. Solar thermal electric power generation -Thermal Energy storage, sensible and latent heat storage, Thermo chemical storage, photovoltaic system for power generation.	9
	Elementary nuclear energy: – Nuclear fission. Nuclear chain reactions .Nuclear reactor principles, sub components of nuclear reactor, Reactor classifications –Control and safety features .	
III	Wind Energy- classification of wind turbines and power performance curve, Energy in wind, calculation of energy content, Power coefficients, Betz limit theory, tip speed ratio, solidity of turbine' power control strategies, Basic principles of Wind Energy Conversion Systems (WECS), Classification of WECS, Parts of WECS.	9

V) COURSE PLAN

	Total	45
	Economic Analysis – Initial and annual cost, basic definitions, present worth calculations, repayment of loan in equal and annual installments, annual savings, cumulative saving and cycle cost.	
V	Hydrogen Energy – various routes for production of Hydrogen energy.	9
	BioMass Energy- Biomass conversion technologies –Bio Gasification, Bio ethanol, Biodiesel, Biogas production from waste biomass, factors affecting biogas generation BioGas -KVIC and Janata model	
	Geothermal energy: Introduction, hot dry rock resources, magma resources, vapor and liquid dominated systems, binary cycle, advantages and disadvantages	
IV	Ocean Energy – Devices for Wave Energy conversion, Ocean Thermal Energy Conversion (OTEC): Principle of OTEC system, Methods of OTEC power generation – Open Cycle (Claude cycle), Closed Cycle (Anderson cycle) and Hybrid cycle (block diagram description of OTEC).	9

VI) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination – 40 : 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 marks

VII) CONTINUOUS ASSESMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: $2\frac{1}{2}$ modules

VII) END SEMESTER EXAMINATION

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	Т	Р	J	Credit	Year of Introduction
23IEL31T	Sports Engineering and Management	IEC	3	0	0	0	3	2023

This course will help understand the world of Sports Engineering and Management in depth through various examples, current technologies, and real-life case studies.

ii COURSE OUTCOMES

After the completion of the course, the student will be able to:

	Course Outcomes	Learning Level
CO 1	Explain concepts of sports engineering	Understand
CO 2	Explain the scope of Emotion control and psychology in sports	Understand
CO 3	Apply Data Capturing Techniques in Sports Sciences	Apply
CO 4	Explain the role of Engineering Design in Sports	Understand
CO5	Explain the concepts of Sports Marketing	Understand

ii SYLLABUS

Introduction Sports Engineering: -Introduction to Sports Engineering, Motion Analysis & Forces in Sport (Biomechanics), Human Movement and Injury Prevention, Equipment Design & Materials Innovation, Introduction to wearable devices and Data Tools.

Emotion and sports Psychology - Introduction to Sports Psychology- Motivation: Meaning, Types, Theories (Drive Theory, Achievement Motivation, etc.). Anxiety: Definition, Types, and Impact on Performance- Exercise, Well-being & Mental Health, Developing a Champion Mindset, Role & Challenges of Sports Psychologists.

Data Capturing Techniques in sports science: Introduction to Wearable Technologies, Type of devices, Information processing Decision making using data analysis on performance, injury, engagement, tools used for data collection – cameras, sensors, GPS trackers etc. Case examples.

Sports Engineering design: Introduction to Sports Product designs and Human-Cantered Design in Sport, Design Tools and Techniques, Materials in Sports Products,

Basics of Sports Science- Anatomy and physiology related to sports performance. Kinematics and kinetics in sports movements.

Sports Marketing & Merchandising: fundamentals of sports marketing, including the 4/5 Ps of marketing, consumer behaviour, branding, sponsorship, digital marketing, and merchandising strategies, along with the practical application of these concepts in the sports industry.

iva) TEXTBOOKS

- 1. Weinberg, R. S. & Gould, D. (2007). Foundations of Sport and Exercise Psychology. U.S.A.: Human Kinetics.
- 2. Bowers, J.E., & Sinclair, P.J. (2020). *Sports Materials and Technology*. Cambridge: Woodhead Publishing
- 3. Fujii, K. (2025). *Machine Learning in Sports: Open Approach for Next Play Analytics.* Springer Singapore.
- 4. (Eds.). (2025). *Recent Trends in Sports Engineering: Select Proceedings of ICSE* 2023. Springer Singapore.

b) REFERENCES

- 1. Fuss, F.K., Subic, A., & Mehta, R. (2018). *Routledge Handbook of Sports Technology and Engineering*. London: Routledge.
- 2. Morgan, C. (2017). Introduction to Psychology. McGraw Hill Education Harper, K. (2017). *Design and Innovation in Sports Engineering*. London: Springer.

v) COURSE PLAN

Module	e Contents	
I	Introduction Sports Engineering: -Introduction to Sports Engineering, Motion Analysis & Forces in Sport (Biomechanics), Human Movement and Injury Prevention, Equipment Design & Materials Innovation, Introduction to wearable devices and Data Tools.	9
п	Emotion and sports Psychology - Introduction to Sports Psychology- Motivation: Meaning, Types, Theories (Drive Theory, Achievement Motivation, etc.). Anxiety: Definition, Types, and Impact on Performance- Exercise, Well-being & Mental Health, Developing a Champion Mindset, Role & Challenges of Sports Psychologists.	9
III	Data Capturing Techniques in sports science: Introduction to Wearable Technologies, Type of devices, Information processing Decision making using data analysis on performance, injury, engagement, tools used for data collection – cameras, sensors, GPS trackers etc. Case examples.	9
IV	Sports Engineering design:: Introduction to Sports Product designs and Human-Centered Design in Sport, Design Tools and Techniques, Materials in Sports Products, Basics of Sports Science- Anatomy and physiology related to sports performance. Kinematics and kinetics in	9

	sports movements.	
V	Sports Marketing & Merchandising: fundamentals of sports marketing, including the 4/5 Ps of marketing, consumer behaviour, branding, sponsorship, digital marketing, and merchandising strategies, Understanding sports distribution and media promotion mix for sports events, along with the practical application of these concepts in the sports industry. Sports sector in India and around the world. Globalization of sports product.	9
	TOTAL	45

vi) CONTINUOUS ASSESMENT EVALUATION PATTERN

Attendance	:	5 marks
Continuous Assessment Tests (2 Nos)	:	20 marks
Assignments/Project/Case study etc.	:	15 marks
Total	:	40 marks

vii) CONTINUOUS ASSESMENT EXAMINATION PATTERN

Two tests of 30 marks each (2.5 modules to be covered in each exam)

Duration – 1.5 hours

viii) END SEMESTER EXAMINATION PATTERN

- Maximum Marks: 60
- Exam Duration: 3 hours

BASKET 2 INSTITUTE ELECTIVES

Course Code	Course Name	Category	L	т	Ρ	J	Credit	Year of introduction
23IEL42Q	INDUSTRIAL ENGINEERING	IEC	3	0	0	0	3	2023

i) COURSE OVERVIEW

The objective of this course is to understand the concepts related to work place design and inventory planning for improving productivity. The course also intends to familiarize the logistics, supply chain and scheduling problems of the production process.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

CO1	Explain the principle and concepts of Industrial management	Understand
CO2	Explain importance of work place design and ergonomics for improving productivity.	Understand
CO3	Explain the inventory planning and material handling techniques	Understand
CO4	Explain the logistics system and decision making in supply chain network.	Understand
CO5	Solve scheduling machine problems during production.	Apply

iii) SYLLABUS

Principles of Industrial Management : Role of Industrial Engineering in organisations, Industrial Engineering in the modern world, principles of management, management functions, Industrial ownership, different scales and levels of industries.

Introduction to Human factors and Ergonomics –Ergonomics and productivity. Design of cognitive work . Engineering anthropometry. Workspace design . Work environment design, Work rest scheduling. Workplace and systems safety.

Inventory planning -Inventory costs, types of warehouses, warehousing functions. Material handling -selection of material handling equipments. Packaging materials, Control of Stock Levels Forecasting techniques in relation to demand and lead times, Materials requirements planning (MRP) and Manufacturing resource planning (MRPII)

Introduction to logistics management - Role of logistics in the Supply chain -Logistics & customer service, Role of logistics in competitive strategy, Logistics organization & performance measurement, Reverse logistics, application of IT in logistics- automatic identification technologies- Logistics outsourcing 3PL & 4PL, Global logistics

Scheduling -Single machine models - Scheduling function and theory – scheduling problem,SPT, EDD sequence ,Parallel machine models -

Independent jobs .Flow shop models -Johnson's problem – Extension of Johnsons's rule for 3 machineproblem ,Palmer's method.Job shop models . Branch and Bound method – Scheduling of continuous production –Line balancing.

iv) a) TEXTBOOKS

- A Bhatia, Industrial Engineering and Operations Management, S.K. Kataria & Sons Company Limited
- 2. Sunil Chopra and Peter Meindl, SUPPLY CHAIN MANAGEMENT STRATEGY, PLANNING AND OPERATION, PHI, 4th Edition, 2010

b) **REFERENCES**

- 1. Philip E. Hicks, Introduction to Industrial engineering and Management Science, McGraw Hill.
- 2. Gavriel Salvendy, Hand Book of Industrial Engineering & Management, John Willey & Sons Prentice-Hall

v) COURSE PLAN

Module	Contents	No. of hours
1	Principles of Industrial Management : Application and role of Industrial Engineering in organisations, Industrial Engineering in the modern world, principles of management, management functions, Industrial ownership:Introduction, types of ownership, partnership, joint stock company, private limited company, public limited company, public sector and private sector, different scales and levels of industries	9
II	Introduction to Human factors and Ergonomics – Ergonomics, work and health, Ergonomics and productivity .Design of cognitive work – information theory – human information processing , Engineering anthropometry. Work-space design – Principles of work design – workplace, machines, tools and equipment, design for standing and seated workers. Work environment design – working conditions . Stress,fatigue and work environment – Work rest scheduling. Workplace and systems safety, Occupational Safety and Health Administration	9
	Inventory planning - Inventory costs, classifying inventory, types of warehouses, warehousing functions, warehouse layout & design. Material handling -objectives, guidelines & principles, selection of material handling equipments. Packaging-role of packaging, packaging materials, material handling efficiency. Role of and function in	11

	Total	45
V	Scheduling -Single machine models - Scheduling function and theory – scheduling problem: objectives, constraints – SPT, EDD sequence – minimization of mean flow time, mean tardiness etc –Parallel machine models - Independent jobs Minimizing makespan.Flow shop models - Johnson's problem – Extension of Johnsons's rule for 3 machineproblem ,Palmer's method.Job shop models . Branch and Bound method – Scheduling of continuous production –Line balancing.	9
IV	Introduction to logistics management- Definition, scope, functions, objectives – Integrated logistics management, role of logistics in the Supply chain - Logistics & customer service, Role of logistics in competitive strategy, Logistics organization & performance measurement, Reverse logistics- scope, design, e-logistics- application of IT in logistics- automatic identification technologies- bar coding, RFID, Logistics outsourcing3PL & 4PL, Global logistics- operational & strategic issues.	7
	determining stock range, Control of StockLevels Forecasting techniques in relation to demand and lead times; Independent demand situations and the use of fixed order quantity and periodic review systems; Materials requirements planning (MRP) and manufacturing resource planning (MRPII)	

vi) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination - 40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

viii CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

viii) END SEMESTER EXAMINATION

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	Т	Р	J	Credit	Year of Introduction
23IEL42R	Sustainable Manufacturing	IEC	3	0	0	0	3	2023

i) COURSE OVERVIEW

The objective of this course is to introduce the concept of sustainable manufacturing. This course also intends to enable them to interpret on the impact of various decisions on sustainability.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

	Course Outcomes	Learning Level
CO 1	Explain the importance of economic sustainability and sustainable practices.	Understand
CO 2	Demonstrate various barriers and strategies to overcome in sustainable manufacturing.	Understand
CO 3	Explain about social sustainability and work management.	Understand
CO4	Explain about various principles of sustainable operations.	Understand
CO5	Build sustainability practices and awareness referring to various case studies.	Apply

iii) SYLLABUS

ECONOMIC SUSTAINABILITY: Industrial Revolution-Economic sustainability: globalization and international issues Sustainability status

SOCIAL AND ENVIRONMENTAL SUSTAINABILITY. Social sustainability – Introduction-Work management -Human rights - Societal commitment -Customers -Business practices -Modelling and assessing social sustainability

SUSTAINABILITY PRACTICES Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing

MANUFACTURING STRATEGY FOR SUSTAINABILITY. Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation

TRENDS IN SUSTAINABLE OPERATIONS. Principles of sustainable operations - Life cycle assessment manufacturing and service activities - Influence of product design on operations.

iv) a) TEXTBOOKS

1. Davim J.P., "Sustainable Manufacturing", John Wiley & Sons., United States, 2010, ISBN: 978-1-848-21212-1.

2. Ibrahim Garbie, "Sustainability in Manufacturing Enterprises Concepts, Analyses and Assessments for Industry 4.0", Springer International Publishing., United States, 2016, ISBN-13: 978-3319293042.

b) **REFERENCES**

- 1. Jovane F., Emper, W.E. and Williams, D.J., "The ManuFuture Road: Towards Competitive and Sustainable High-Adding-Value Manufacturing", Springer, 2009, United States, ISBN 978-3-540-77011-4.
- 2. Kutz M., "Environmentally Conscious Mechanical Design", John Wiley & Sons., United States, 2007, ISBN: 978-0-471-72636-4.

v) COURSE PLAN

Module		Hours
I	Industrial Revolution-Economic sustainability: globalization and international issues Sustainability status - Emerging issues- Innovative products- Reconfiguration manufacturing enterprises - Competitive manufacturing strategies - Performance evaluation- Management for sustainability -Assessments of economic sustainability	9
П	Social sustainability – Introduction-Work management -Human rights - Societal commitment -Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources - Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability	9
III	Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modelling and assessment of sustainable practicing - Sustainability awareness -Sustainability drivers and barriers - Availability of sustainability indicators- Designing questionnaires- Optimizing Sustainability Indexes-Elements –Cost and time model. Case studies of sustainability practicing.	9
IV	Concepts of competitive strategy and manufacturing strategies, development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs	9
V	Principles of sustainable operations - Life cycle assessment manufacturing and service activities - Influence of product design on operations - Process analysis - Capacity management - Quality management -Inventory management - Just-In-Time systems - Resource efficient design - Consumerism and sustainable well-being.	
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination -40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

viii) END SEMESTER EXAMINATION

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	Т	Р	J	Credit	Year of Introduction
23IEL42S	Marketing Management for Engineers	IEC	3	0	0	0	3	2023

i) COURSE OVERVIEW

The course aims at introducing the basic concepts of marketing to the undergraduate students in engineering. The learning shall help the students in better designing, manufacturing and selling product/ service packages keeping competitive market, customers and cost in view.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

	Course Outcomes	Learning Level
CO 1	Explain the concept and processes in marketing management.	Understand
CO 2	Explain the bases of segmenting consumers and aspects of demand forecasting.	Understand
CO 3	Explain the objectives, factors and strategies associated with pricing decisions.	Understand
CO4	Explain the concepts of marketing communication, advertising, sales promotion and promotion mix.	Understand
CO5	Apply marketing management principles and strategies to a specific project or product.	Apply

iii) SYLLABUS

Introduction: Marketing Management: Concept, Process, Functions and relevance in the current context Market Segmentation, Targeting and Positioning. Pricing Decision: Objectives and Factors influencing pricing, Pricing method and strategies. Trends in Marketing: Green Marketing, Customer Relationship Management Integrated Marketing Communication(IMC)-Concept of IMC, the marketing communication process, Promotion Mix.

iv) a) TEXTBOOKS

- 1. Etzel, Walker, Stanton and Pandit, Marketing, 14/e, Tata McGraw Hill.
- 2. Saxena, "Marketing Management" Tata McGraw Hill, 4/e.

b) REFERENCES

- 1. Grewal, Levy, "Marketing" Tata McGraw Hill, special Indian edition
- 2. Kotler, Keller, Koshy and Jha, "Marketing Management", 13/e, Pearson Education

v) COURSE PLAN

Module	Contents	Hours
I	Introduction to marketing - concept of market and marketing – marketing environment - controllable factors - factors directed by top management - factors directed by marketing - uncontrollable factors - demography, economic conditions, competition. Social and Marketing planning - marketing planning process - Boston consultancy group model	
II	marketing mix - marketing mix variables. Developing, testing and launching of new products. Market segmentation and market targeting - introduction to segmentation - targeting and product positioning. Marketing research - need and scope - marketing research process – research objectives, developing research plan, collecting information, analysis, and findings	9
III	Consumer behaviour - factors influencing consumer behaviour - perceived risks Product life cycle - marketing strategies for different stages of product life cycle. Marketing communication - marketing mix variables - steps in developing effective communication - identification of target audience - determination of communication objectives	9
IV	Designing the message - selecting the communication channels - promotion mix evaluation. Product Pricing and Marketing Research: Objectives, pricing, decisions and pricing methods, pricing management. Introduction, uses, process of marketing research. New trends in marketing- Brand management - significance of branding to consumers and firms.	9
V	Advertising Sales Promotion and Distribution: Characteristics, impact, goals, types, and sales promotions – point of purchase – unique selling proposition. Characteristics, wholesaling, retailing, channel design, logistics, and modern trends in retailing. Marketing Planning and Strategy Formulation: Components of marketing plan-strategy formulations and the marketing process, implementations, portfolio analysis	9
	Total	45

vi) ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

vii) CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

viii) END SEMESTER EXAMINATION

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	т	Р	J	Credit	Year of Introduction
23IEL42T	Alternate Fuels	IEC	3	0	0	0	3	2023

i) COURSE OVERVIEW:

The aim of the course is to impart the knowledge about application of alternative fuels in Internal combustion engines. The course also intends to familiarise the methods of production of Bio gas, methanol, ethanol, Bio diesel and various aspects of electrical and Hybrid vehicles.

ii) COURSE OUTCOMES

After the completion of the course, the student will be able to:

	Course Outcomes	Learning Level
	Analyse the various aspects and parameters of fuels for Internal combustion engine.	Apply
CO 2	Explain the need of alternate fuels in internal combustion engines.	Understand
	Explain various properties, sources, methods of production of methanol, ethanol and Bio diesel.	Understand
	Explain the sources, method of production and use of hydrogen as alternative fuels for internal combustion engine.	Understand
CO 5	Explain the various aspects of fuel cells, electrical and hybrid vehicles.	Understand

iii) SYLLABUS

Introduction: Working process of I.C. Engine. Various parameters related to properties of different types of fuel: Rating of fuel, Air / Fuel ratio, Calorific Value, Fuel efficiency, Fuel requirement, Engine efficiency and Engine life. Sources of fossil fuel, scope of availability of fossil fuel in future.

Need for Alternative Fuels: Effects of constituents of Exhaust gas emission on environmental condition of earth. Pollution created by Exhaust gas emission in atmosphere. Greenhouse effect, Factors affecting greenhouse effect. Global Carbon Budget, Carbon foot print and Carbon credit. Bharat stages emission standards.

Alcohol: Sources of Methanol and Ethanol, methods of production. Properties of methanol & ethanol as engine fuels, Use of alcohols in S.I. and C.I. engines. **Bio Diesels**: Base materials used for production of Bio Diesel, Process of separation of Bio Diesel. Properties of Diesel blended with bio diesel.

Hydrogen as a substitute fuel. Properties, Sources and methods of Production of Hydrogen, Storage and Transportation of hydrogen. Application and Advantages of hydrogen as fuel for IC engine/ hydrogen car. Layout of a hydrogen car.

Fuel Cells: Concept of cells based on usage of Hydrogen and Methanol. Power rating. Layout of fuel cell vehicle. **Electric & Hybrid Vehicles**: Layout of an electric vehicles,

B.Tech Mechanical Engineering Syllabus (Autonomous) 2023

advantages & limitations. Systems components, electronic controlled systems, high energy and power density batteries. Types of hybrid vehicles.

(a) TEXT BOOKS

- 1) Anand Krishnasamy, Saurabh K Gupta, *Alternate fuels for IC engines*, McGraw Hill Education, 1st Edition, 2024.
- 2) SS. Thipse, *Alternate Fuels*, Jaico Publishing House; First Edition, 2010.

(b) **REFERENCES**

- 1) Richard L. Bechtold, *Alternate Fuels Guide Book*, SAE International.
- 2) John B Heywood., Internal Combustion Engine Fundamentals, McGraw Hill Education, 1st Edition, 2017.
- 3) V. Ganesan, *Internal Combustion Engines*, Mc Graw Hill Education, 4th Edition, 2012.

v) COURSE PLAN

Module	Contents	
I	Introduction: Working process of I.C. Engine. Various parameters related to properties of different types of fuel: Rating of fuel, Air / Fuel ratio, Calorific Value, Fuel efficiency, Fuel requirement, Engine efficiency and Engine life. Sources of fossil fuel, scope of availability of fossil fuel in future.	9
11	Need for Alternative Fuels: Effects of constituents of Exhaust gas emission on environmental condition of earth (N_2 , CO_2 , CO , NOx , SO_2 , O_2) Pollution created by Exhaust gas emission in atmosphere. Green house effect, Factors affecting green house effect. Study of Global Carbon Budget, Carbon foot print and Carbon credit calculations. Emission norms as per Bharat Standard upto BS – VI.	9
	Alcohols: Sources of Methanol and Ethanol, methods of it's production. Properties of methanol & ethanol as engine fuels, Use of alcohols in S.I. and C.I. engines, performance of blending methanol with gasoline. Emulsification of alcohol and diesel.	
III	Biodiesel: Base materials used for production of Bio Diesel (Karanji oil, Neemoil, Sunflower oil, Soyabeen oil, Musturd oil, Palm oil, Jatropha seeds). Process of separation of Bio Diesel. Properties Diesel blended with vegetable oil, and difference in performance of Engine. Various Vegetable oils for Engines – Esterification – Performance and emission characteristics.	9
IV	Hydrogen: Hydrogen as a substitute fuel. Study Properties, Sources and methods of Production of Hydrogen, Storage and Transportation of hydrogen. Also, the economics of Application and Advantages of hydrogen (Liquid hydrogen) as fuel for IC engine/ hydrogen car. Layout of a hydrogen car.	9
v	Fuel Cells : Concept of fuel cells based on usage of Hydrogen and Methanol. Power rating, and performance. Heat dissipation, Layout of fuel cell vehicle. Electric & Hybrid Vehicles : Layout of an electric vehicles, advantages & limitations. Systems components, electronic controlled systems, high energy and power density batteries. Types of hybrid vehicles.	9

	Total	45
--	-------	----

VI) ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination – 40:60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Continuous Assessment Tests (2 Nos)	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
Total	:	100 marks

VII) CONTINUOUS ASSESMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ½ modules

VII) END SEMESTER EXAMINATION

- Maximum Marks: 60
- Exam Duration: 3 hours