Course Code	Course Name	Category	L	Т	Р	Credit	Year of Introduction
MA0M20A	Advanced Linear Algebra	BTECH	3	1	0	4	2020
		MINOR S4					

Preamble: This course introduces the concept of a vector space which is a unifying abstract frame work for studying linear operations involving diverse mathematical objects such as n-tuples, polynomials, matrices and functions. Students learn to operate within a vector and between vector spaces using the concepts of basis and linear transformations. The concept of inner product enables them to do approximations and orthogonal projects and with them solve various mathematical problems more efficiently.

Prerequisite: A basic course in matrix algebra.

Course Outcomes: After the completion of the course the student will be able to

CO 1	Identify many of familiar systems as vector spaces and operate with them Apply			
	using vector			
	space tools such as basis and dimension.			
CO 2	Understand linear transformations and manipulate them using their matrix	Apply		
	representations.			
CO 3	Understand the concept of real and complex inner product spaces and their Apply applications inconstructing approximations and orthogonal projections			
CO 4	Compute eigen values and eigen vectors and use them to diagonalize matrices Apply and simplify Apply			
	representation of linear transformations			
CO 5	Apply the tools of vector spaces to decompose complex matrices into simpler components, findleast square approximations, solution of systems of differential equations etc.Apply			

Syllabus

Module 1

Vector Spaces, Subspaces -Definition and Examples. Linear independence of vectors, Linear span, Bases and dimension, Co-ordinate representation of vectors. Row space, Column space and null space of a matrix

Module 2

Linear transformations between vector spaces, matrix representation of linear transformation, change of basis, Properties of linear transformations, Range space and Kernel of Linear transformation, Inverse transformations, Rank Nullity theorem, isomorphism

Module 3

Inner Product: Real and complex inner product spaces, properties of inner product, length and distance, Cauchy-Schwarz inequality, Orthogonality, Orthonormal basis, Gram Schmidt orthogonalization process. Orthogonal projection. Orthogonal subspaces, orthogonal compliment and direct sum representation.

Module 4

Eigen values, eigenvectors and eigen spaces of linear transformation and matrices, Propertiesof eigen values and eigen vectors, Diagonalization of matrices, orthogonal diagonalization real symmetric matrices, representation of linear transformation by diagonal matrix, Power method for finding dominant eigen value

Module 5

LU-decomposition of matrices, QR-decomposition, Singular value decomposition, Least squares solution of inconsistent linear systems, curve-fitting by least square method, solution of linear systems of differential equations by diagonalization

Text Books

- 1. Richard Bronson, Gabriel B. Costa, *Linear Algebra-an introduction*, 2nd edition, Academic press, 2007
- 2. Howard Anton, Chris Rorres, *Elementary linear algebra: Applications versio*, 9th edition, Wiley

References

- 1. Gilbert Strang, *Linear Algebra and It's Applications*, 4th edition, Cengage Learning, 2006
- 2. Seymour Lipschutz, Marc Lipson, *Schaum's outline of linear algebra*, 3rd Ed., Mc Graw Hill Edn.2017
- 3. David C Lay, Linear algebra and its applications, 3rd edition, Pearson
- 4. Stephen Boyd, Lieven Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, 2018
- 5. W. Keith Nicholson, *Linear Algebra with applications*, 4th edition, McGraw-Hill, 2002

Course Contents

No	Торіс	No. of Lectures	
1	Vector spaces- Defining of vector spaces, example, Subspaces,	12	
	Linear dependence, Basis, dimension, Row space, column space,		
	rank of a matrix, Co ordinate representation		
2	Linear Mapping - General linear transformation, Matrix of	12	
	transformation, Kernel and range of a linear mapping, Properties of		
	linear transformations, Rank Nullity theorem, Change of basis .		
	Isomorphism		
3	Inner product spaces- Inner Product: Real and complex inner	12	
	product spaces, Properties of inner product, length and distance,		
	Triangular inequality, Cauchy-Schwarz inequality, Orthogonality,		
	Orthogonal complement, Orthonormal bases, Gram Schmidt		
	orthogonalization process, orthogonal projection, Direct sum		
	representation.		
4	Eigen values and Eigen vectors- Eigen values and Eigen vectors of	12	
	a linear transformation and matrix, Properties of Eigen values and		
	Eigen vectors, Diagonalization., orthogonal diagonalization, Power		
	method, Diagonalizable linear transformation		
5	Applications- LU decomposition, QR Decomposition, Singular	12	
	value decomposition, Least square solution, Curve fitting, Solving		
	systems of differential equations		
	Total hour	s 60	

i) ASSESSMENT PATTERN

Bloom's Taxonomy	Continuous Ass (Ma	End Semester Exam	
Level	CA Exam I	CA Exam II	— (Marks)
Remember	10	10	20
Understand	20	20	40
Apply	20	20	40
Analyse			
Evaluate			
Create			

ii) CONTINOUS ASSESSMENT EVALUATION PATTERN

Attendance	:	10 marks
CA Exams (2 numbers)	:	25 marks
Assignment/Project/Case study etc.	:	15 marks
Total	:	50 marks

iii) CONTINUOUS ASSESSMENT EXAMINATION PATTERN

- Two tests of 50 marks each (half the syllabus to be covered in each exam $-2\frac{1}{2}$ modules)
- Duration 2 hours

iv) END SEMESTER EXAMINATION PATTERN

Duration – **3 hours** Total marks -**100**