

CURRICULUM and SYLLABI

FOR

B. TECH DEGREE PROGRAMME

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

SEMESTERS V & VI

2023 SCHEME (AUTONOMOUS)

MAR BASELIOS COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, Autonomous Institution Affiliated to APJ Abdul Kalam Technological University) MAR IVANIOS VIDYANAGAR, NALANCHIRA, THIRUVANANTHAPURAM – 695015, KERALA.

Phone: 0471 2545866 Fax: 0471 2545869 Web: <u>www.mbcet.ac.in</u> email: <u>hodec@mbcet.ac.in</u>

MAR BASELIOS COLLEGE OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

B. TECH DEGREE PROGRAMME

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

CURRICULUM and SYLLABI

for

SEMESTERS V & VI

Items	Board of Studies (BoS)	Academic Council (AC)
Date of Approval	04-04-2024	19-06-24
	29-04-2025	28-05-2025

Head of Department Chairman, Board of Studies

Principal Chairman, Academic Council

B. Tech in Electronics and Communication Engineering

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

B.TECH. PROGRAMME IN ELECTRONICS AND COMMUNICATION ENGINEERING

For the students admitted from 2023-24

SCHEDULING OF COURSES

i) Knowledge Segments and Credits

Every course of B. Tech Programme is placed in one of the nine categories as listed in table below. No semester shall have more than six lecture-based courses and two laboratory courses, and/or drawing/seminar/project courses in the curriculum.

Sl. No.	Category	Category Code	Total credits
1	Humanities and Social Sciences including Management Courses	HSC	9
2	Basic Science Courses	BSC	26
3	Engineering Science Courses	ESC	21
4	Programme Core Courses	PCC	72
5	Programme Elective Courses	PEC	18
6	Institute Elective Courses	IEC	6
7	Project Work, Seminar, Comprehensive Course Viva Voce and Internship	PWS	15
8	Mandatory Student Activities (P/F)	MSA	3
	Total Mandatory Credits		170
	Value Added Courses (Optional) – Honours/Minor	VAC	15

ii) Semester-wise Credit Distribution

Semester	Ι	II	Ш	IV	V	VI	VII	VIII	Total	
Credits for Courses	19	22	23	21	22	22	24	14	<i>167</i>	
Credits for Activities 3										
Total Credits										
Value Added Courses (Optional) – Honours / Minor										
Total Credits										

			SEMESTER I							
	ory	C		Cr	edit S	tructu	ire		S	it
Slot	Category	Course Code	Courses	L	Т	Р	J	SS	Hours	Credit
А	BSC	23MAL10A	Linear Algebra and Calculus	3	1	0	0	5	4	4
В	BSC	23PYL10A	Engineering Physics	3	1	0	0	5	4	4
D	ESC	23ESB10D	Problem Solving and Programming in C	2	1	2	0	4.5	5	4
Е	ESC	23ESL10J	Basics of Electrical Engineering A	2	0	0	0	3	4	2
E	ESC	23ESL10L	Basics of Electronics Engineering	2	0	0	0	3	4	2
G	ESC	23ESL1NA	Environmental Science	2	0	0	0	3	2	1*
S	BSC	23PYP10A	Engineering Physics Lab	0	0	2	0	1	2	1
Т	ESC	23ESP10B	Electrical and Electronics Workshop	0	0	2	0	1	2	1
	TOTAL								23	19

*Not to be considered for Grade/GPA/CGPA. Pass or Fail Only

	SEMESTER II													
	gory	Course		Cr	edit S	tructi	ıre		SJI	dit				
Slot	Cate gory	Code	Courses	L	Т	Р	J	SS	Hours	Credit				
А	BSC	23MAL10B	Vector Calculus, Differential Equations and Transforms	3	1	0	0	5	4	4				
В	BSC	23CYL10A	Engineering Chemistry	3	1	0	0	5	4	4				
С	ESC	23ESB10A	Engineering Graphics	2	0	2	0	4	4	3				
D	ESC	23ESB10G	Python Programming	2	0	2	0	4	4	3				
Е	PCC	23ECL10A	Network Theory	3	1	0	0	5	4	4				
G	HSC	23HSJ1NB	Professional Communication	2	0	0	2	5	4	1*				
S	BSC	23CYP10A	Engineering Chemistry Lab	0	0	2	0	1	2	1				
Т	ESC	23ESB10P	Manufacturing and Construction Practices B	1	0	2	0	2.5	3	2				
			TOTAL					31.5	29	22				

*Not to be considered for Grade/GPA/CGPA. Pass or Fail Only

			SEMESTER II	I						
	ory	Course		Cr	edit S	tructu	ıre		rs	lit
Slot	Category	Code	Courses	L	Т	Р	J	SS	Hours	Credit
А	BSC	23MAL20A	Partial Differential Equation and Complex Analysis	3	1	0	0	5	4	4
В	PCC	23ECL20A	Analog Circuits	3	1	0	0	5	4	4
С	PCC	23ECL20B	Solid State Devices	3	1	0	0	5	4	4
D	PCC	23ECJ20C	Logic Circuit Design	2	1	0	1	4.5	4	4
Е	ESC	23ESL00A	Design Engineering	2	0	0	0	3	2	2
G	HSC	23HSL2NA	Professional Ethics	2	0	0	0	3	2	1*
S	PCC	23ECP20A	Analog Circuits Lab	0	0	3	0	1.5	3	2
Т	PCC	23ECP20B	Logic Circuit Design Lab	0	0	3	0	1.5	3	2
м	VA	DIECT JMV	Minor Course	3	0	0	0	4.5	3	3
М	С	23ECL2MX	winor Course	2	1	0	0	3.5	5	3
	TOTAL							28.5/ 33/32	26/ 29	23/ 26

^{*}Not to be considered for Grade/GPA/CGPA. Pass or Fail Only

	SEMESTER IV													
	jory	Course		C	redit	Struc	ture		ILS	dit				
Slot	Category	Code	Courses	L	Т	Р	J	SS	Hours	Credit				
А	BSC	23MAL20 C	Probability, Random Processes and Numerical Methods	3	1	0	0	5	4	4				
В	PCC	23ECL20D	Linear Integrated Circuits	3	1	0	0	5	4	4				
С	PCC	23ECL20E	Signals and Systems	3	1	0	0	5	4	4				
D	PCC	23ECJ20F	Microcontroller based system design	3	0	2	1	6.5	6	5				
Е	HSC	23HSL2NB	Universal Human Values-II	2	1	0	0	3.5	3	1*				
G	ESC	23ESL2NC	Industrial Safety Engineering	2	1	0	0	3.5	3	1*				
S	PCC	23ECP20C	Linear Integrated Circuits Lab	0	0	3	0	1.5	3	2				
M/H	VAC	23ECL2MX /	Minor / Honours Course	3	0	0	0	4.5	3	3				
		23ECL2HX		2	1	0	0	3.5						
	TOTAL							30/ 34.5 / 33.5	27/ 30/ 33	21/ 24/ 27				

*Not to be considered for Grade/GPA/CGPA. Pass or Fail Only

	SEMESTER V													
	ory	Course		Cre	edit St	ructi	ire		LS	lit				
Slot	Category	Code	Courses	L	Т	Р	J	SS	Hours	Credit				
А	PCC	23ECL30A	Analog and Digital Communication	3	1	0	0	5	4	4				
В	PCC	23ECL30B	Digital Signal Processing	3	1	0	0	5	4	4				
С	PCC	23ECL30C	Electromagnetic Field Theory	3	1	0	0	5	4	4				
D	PEC	23ECL31X	Program Elective I	3	0	0	0	4.5	3	3				
E	HSC	23HSL00A	Management for Engineers	3	0	0	0	4.5	3	3				
S	PCC	23ECP30A	Communication Lab	0	0	3	0	1.5	3	2				
Т	PCC	23ECP30B	Digital Signal Processing Lab	0	0	3	0	1.5	3	2				
NA/II	VAC		Min on/Hon over Covers	3	0	0	0	4.5	3	3				
M/H	VAC		Minor/Honours Course	2	1	0	0	3.5	3	3				
	TOTAL								24/ 27/ 30	22/25/ 28				

	SEMESTER VI												
	gory	Course		Cre	dit S	truc	ture		Irs	dit			
Slot	Category	Code	Courses	L	Τ	Р	J	SS	Hours	Credit			
А	PCC	23ECL30D	Control Systems	3	1	0	0	5	4	4			
В	PCC	23ECJ30E	VLSI Circuit Design	3	1	2	0	6	6	5			
D	PEC	23ECL32X	Program Elective II	3	0	0	0	4.5	3	3			
E	IEC	23IEL31X	Institute Elective I	3	0	0	0	4.5	3	3			
F	HSC	23HSL30A	Business Economics and Accountancy	3	0	0	0	4.5	3	3			
Т	PWS	23ECS38A	Seminar	0	0	4	0	2	4	2			
U	PWS	23ECJ38B	Mini Project	0	0	4	0	4	4	2			
M/H	VAC		Minor/Honours Course	3	0	0	0	4.5	3	3			
				2	1	0	0	3.5					
	TOTAL								27/ 30/ 33	22/25/ 28			

	SEMESTER VII												
	ory	Course		Cr	edit S	truct	ure		rs	lit			
Slot	Category	Code	Courses	L	Т	Р	J	SS	Hours	Credit			
А	PCC	23ECL40A	Information Theory and Coding	3	1	0	0	5	4	4			
В	PCC	23ECL40B	Wireless Communication	3	0	0	0	4.5	3	3			
С	PCC	23ECL40C	Computer Networks	3	0	0	0	4.5	3	3			
D	PEC	23ECL43X	Program Elective III	3	0	0	0	4.5	3	3			
Е	IEC	23IEL42X	Institute Elective II	3	0	0	0	4.5	3	3			
Т	PWS	23ECV48A	Comprehensive Course Viva	0	0	2	0	1	2	1			
U	PWS	23ECJ48A	Project	0	0	10	0	10	10	5			
0	rws	23ECI48A	Internship*	0	0	10	0	10	10	5			
S	PCC	23ECP40A	Advanced Communication Lab	0	0	3	0	1.5	3	2			
NA/II	VAC		Miner /III	0	1	6	0	4.5	2	2			
M/H	VAC		Minor/Honours Course	3	0	0	0	4.5	3	3			
	TOTAL								31/3 4/37	24/ 27/ 30			

* Students can opt for Internship either in S7 or S8. However, in S7, the internship can be permitted only if there are no pending Programme/Course requirements in the semester, that need to be completed in College in the offline mode, such as laboratory sessions.

	SEMESTER VIII																										
	ıry	G		Cr	Credit Structure																						
Slot	Category	Course Code	Courses	L	Т	Р	J	SS	Hours	Credit																	
А	PEC	23ECL44X	Program Elective IV	3	0	0	0	4.5	3	3																	
В	PEC	23ECL45X	Program Elective V	3	0	0	0	4.5	3	3																	
С	PEC	23ECL46X	Program Elective VI	3	0	0	0	4.5	3	3																	
U	PW	23ECJ48B	Project			10	0	10	10	~																	
	S	23ECI48A	Internship*		0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0	10	0	10	10	5
Н	VA C		Honours Course					3	6	3																	
	TOTAL							23.5 / 26.5	19/25	14/17																	

B.Tech in Electronics and Communication Engineering

	PROGRAMME ELECTIVE-I													
	Course Courses		rs	lit										
Slot	Category	Code	Courses	L	Т	Р	J	SS	Hours	Credit				
		23ECL31A	Digital System Design	2	1	0	0	3.5	3	3				
		23ECL31B	Power Electronics	3	0	0	0	4.5	3	3				
D	PEC	23ECL31C	Mechatronics	3	0	0	0	4.5	3	3				
D	PEC	23ECL31D	DSP architectures	3	0	0	0	4.5	3	3				
		23ECL31E	Computer Architecture	2	1	0	0	3.5	3	3				
		23ECL31F	Data Structures using C	3	0	0	0	4.5	3	3				
		23ECL31G	Bio medical Engineering	3	0	0	0	4.5	3	3				

	PROGRAMME ELECTIVE-II													
	ory		rs	lit										
Slot	Category	Course Code	L	Т	Р	J	SS	Hours	Credit					
		23ECL32A	Digital Image Processing	2	1	0	0	3.5	3	3				
		23ECL32B	Data Analysis using Python	2	1	0	0	3.5	3	3				
		23ECL32C	Embedded Systems	3	0	0	0	4.5	3	3				
D	PEC	23ECL32D	Introduction to MEMS	3	0	0	0	4.5	3	3				
		23ECL32E	E Satellite Communication		0	0	0	4.5	3	3				
	2	1	0	0	3.5	3	3							
	23ECL32GMulti-rate Systems2100									3				

	PROGRAMME ELECTIVE-III													
	Credit Structure													
Slot	Category	Code	Courses	L	Т	Р	J	SS	Hours	Credit				
		23ECL43A	Real Time Operating System	3	0	0	0	4.5	3	3				
		23ECL43B	Microwave Engineering	3	0	0	0	4.5	3	3				
D	PEC	23ECL43C	Speech and Audio Processing	2	1	0	0	3.5	3	3				
D	PEC	23ECL43D	Machine Learning	2	1	0	0	3.5	3	3				
		23ECL43E	Optical Fibre Communication	3	0	0	0	4.5	3	3				
		23ECL43F	Quantum Computing	3	0	0	0	4.5	3	3				
	23ECL43G Wavelet Theory 2 1 0 0 3.5 3 3													

	PROGRAMME ELECTIVE-IV													
	ory	Course		Cre	dit St	ructu	ire		SJ	dit				
Slot	Category	Course Courses		L	Т	Р	J	SS	Hours	Credit				
		23ECL44A	Organic Electronics	3	0	0	0	4.5	3	3				
		23ECL44B	Pattern Recognition	3	0	0	0	4.5	3	3				
D	PEC	23ECL44C	RFMEMS	3	0	0	0	4.5	3	3				
D	FEC	23ECL44D	Secure Communication	2	1	0	0	3.5	3	3				
		23ECL44E	Deep Learning		0	0	0	4.5	3	3				
		23ECL44F	Robotics 3 0 0 0			0	3.5	3	3					
		23ECL44G	Mixed Signal Circuit2100						3	3				

	PROGRAMME ELECTIVE-V													
	Credit Structure													
Slot Slot Course Course Courses		Courses	L	Т	Р	J	SS	Hours	Credit					
		23ECL45A	Low Power VLSI	3	0	0	0	4.5	3	3				
		23ECL45B	Cyber Security	3	0	0	0	4.5	3	3				
D	DEC	23ECL45C	Adaptive Signal Processing	2	1	0	0	3.5	3	3				
D	D PEC 23ECL45C Maprice Signal Processing 23ECL45D Wireless Sensor Networks		Wireless Sensor Networks	3	0	0	0	4.5	3	3				
23ECL45E RF Circuit Design			3	0	0	0	4.5	3	3					
		23ECL45F	2	1	0	0	3.5	3	3					
	23ECL45GDigital Video Processing21003.533													

	PROGRAMME ELECTIVE-VI													
	ory		SJ	lit										
Slot	Category	Course Code	Courses	L	Т	Р	J	SS	Hours	Credit				
		23ECL46A	Introduction to Queuing theory	3	0	0	0	4.5	3	3				
		23ECL46B	Computer Vision	3	0	0	0	4.5	3	3				
D	PEC	23ECL46C	Modern Communication Systems	3	0	0	0	4.5	3	3				
		23ECL46D	3ECL46D Microwave Devices and Circuits		0	0	0	4.5	3	3				
		23ECL46E	Nano Electronics	3 0 0 0			0	4.5	3	3				
		23ECL46F	ECL46FInstrumentation300						3	3				
	23ECL46GAnalog CMOS Design3000									3				

	INSTITUTE ELECTIVE-I												
Credit S Course							Credit Structure			SJ	dit		
	Slot	Category	Code	Courses		Т	Р	J	SS	Hours	Credit		
			23IEL31I	Optimization Techniques	2	1	0	0	3.5	3	3		
	E IEC 23IEL31J		23IEL31J	Biosensors and Transducers	2	1	0	0	3.5	3	3		
	E IEC 23IEL31K Es		23IEL31K	Essentials of Entrepreneurship	2	1	0	0	3.5	3	3		
23IEL31LInternet of Things21								0	3.5	3	3		

	INSTITUTE ELECTIVE-II												
	ory	Course		Cre	dit St	ructu	ire		SJ	dit			
Slot	Category	Code	Courses		Т	Р	J	SS	Hours	Credit			
		23IEL42I	Operations Research	2	1	0	0	3.5	3	3			
D	PEC	23IEL42J	Space Technology	3	0	0	0	4.5	3	3			
	D FEC 23IEL42k		Assistive Technology	3	0	0	0	4.5	3	3			
23IEL42LIntellectual Property Rights2100							3.5	3	3				

MINOR BASKETS

Semester		BASKET- I DED SYSTEMS A PPLICATIONS	AND			BASKET-II CIAL INTELLIGI GNAL PROCESS]
Š	Course Code	Course	L-T-P-J	Credit	Course Code	Course	L-T-P-J	Credit
S3	23ECL2 MA	Electronic Circuits	2-1-0-0	3	23ECL2 MC	Introduction to Multidimension al Data	2-1-0-0	3
S4	23ECL2 MB	Microcontrollers	2-1-0-0	3	23ECL2 MD	Machine Learning for data processing	2-1-0-0	3
S5	23ECL3 MA	Embedded System Design	3-0-0-0	3	23ECL3 MC	Deep Learning	2-1-0-0	3
S6	23ECL3 MB	Design for IoT	3-0-0-0	3	23ECL3 MD	Computational tools for AI	2-1-0-0	3
S7/ S8	23ECJ4 MA	Mini Project	0-9-0-0	3	23ECJ4 MC	Mini Project	0-9-0-0	3

Semester		SKET-III PBOTICS			BIOM	BASKET-IV EDICAL ENGINE	ERIN	ſG
	Course Code	Course	L-T-P-J	Credit	Course Code	Course	L-T-P-J	Credit
S 3	23ECL2 ME	Fundamentals of Robotics	3-0-0-0	3	23ECL2 MG	Fundamentals of Biomedical E ngineering	3-0-0-0	3
S4	23ECL2 MF	Introduction to Industrial Automation	2-1-0-0	3	23ECL2 MH	Assistive Technologies	3-0-0-0	3
S 5	23ECL3 ME	Vision System	3-0-0	3	23ECL3 MG	Medical Devices Engineering	3-0-0-0	3
S 6	23ECL3 MF	Artificial Intelligence for Robotics	3-0-00	3	23ECL3 MH	Bio Signal and Image Processing	3-0-0-0	3
S7/ S8	23ECJ4 ME	Mini Project	0-9-0-0	3	23ECJ4 MG	Mini Project	0-9-0-0	3

HONOURS BASKETS

Semester	VLSI A	GROUP I ND EMBED SYSTEMS	DEI)	GROUP II COMMUNICATION				GROUP III SIGNAL PROCESSING					
	Course Code	Course	L-T-P-J	Credit	Course Code	Course	L-T-P-J	Credit	Course Code	Course	L-T-P-J	Credit		
S4	23ECL 2HB	Nanoelect ronics	3-0-0-0	3	23ECL 2HD	Random Process and Applicati ons	2-1-0-0	3	23ECL 2HF	Wavelet Transfor m and Applicati ons	2-1-0-0	3		
S 5	23ECL 3HA	FPGA based System Design	3-0-0-0	3	23ECL 3HC	Detection and Estimatio n Theory	3-0-0-0	3	23ECL 3HE	DSP System Design	3-0-0-0	3		
S 6	23ECL 3HB	Electronic s Design and Automati on	3-0-0-0	3	23ECL 3HD	Design and Analysis of Antennas	3-0-0-0	3	23ECL 3HF	Multirate Signal Processin g	2-1-0-0	3		
\$7	23ECL 4HA	RF MEMS	3-0-0-0	3	23ECL 4HC	MIMO and Multiuser Communi cation Systems	3-0-0-0	3	23ECL 4HE	Computat ional tools for Signal Processin g	2-1-0-0	3		
S 8	23ECJ 4HB	Mini Project	0-9-0-0	3	23ECJ 4HD	Mini Project	0-9-0-0	3	23ECJ 4HF	Mini Project	0-9-0-0	3		

SEMESTER V

Course Code	Cour	se Name	Category	L	т	Р	J	Credit	Year of Introduction		
23ECL30A	ANALOG DIGITAL COMMUI	AND	PCC	3	1	0	0	4	2023		
i. PREREQ	UISITE:	23ECL20E - 23MAL20C- N		Ra	ndo	om		cess an	b		
ii. COURSE	ii. COURSE OVERVIEW										
Goal of this communicat		•	insight into	b the	e c	onc	ept	s of ana	log and digital		
iii. COURSE											
After the cor	npletion of	the course, the	e student wi	ll be	e ab	le t	o:				
Course Outcomes		[Description						Level		
CO 1	Compute systems	various par	ameters o	fa	inal	og	mc	odulation	Apply		
CO 2		veform coding							Apply		
CO 3	Apply sig receivers	nal modelling	techniques	in tł	he d	desi	gn	of digital	Apply		
CO 4	Apply dig	ital modulation	n techniques	in s	sigr	nal t	ran	smission	Apply		
CO 5	Explain te	echniques in s	pread spect	rum	CO	mm	unio	cation	Understand		
0	nmunicatio							•	e modulation, smitters and		
Digital base	band com	munication –	sampling, F	PAN	/I, F	°C№	1, D	PCM, D	М		
		, Digital base nd correlation		smis	ssic	on ii	ר A	WGN cł	nannels – GS		
Digital passband Modulation – ASK, PSK, FSK. M-ary schemes – MF MASK and QAM									IPSK, MFSK,		
Spread Spe	ctrum Cor	nmunication									
v (a) TEXT I	BOOKS										
	on Haykin,	Digital Commu	unication Sy	ster	ns,	4th	edi	tion, Wile	ey, 2000.		
2. D Sklar, Digital Communications: Fundamentals and Applications Pearson									is,3/e,		

 R. C. Dixen, "Spread Spectrum Systems with commercial application Wiley, 3rd Ed. 	", John
(b) REFERENCES	
1. John G Proakis, Digital Communication,4/e, Wiley	
2. R. Gallager, Principles of Digital Communication, Oxford University Pre-	SS
vi. COURSE PLAN	
Module Contents	Hours
Fundamentals of analog communication systems. Need for modulation. Amplitude modulation – Mathematical representation and spectrum- DSB-SC, SSB modulation and Vestigial Sideband modulation. Transmitter and receiver. Frequency and phase modulation– Mathematical representation and spectrum. Relationship between FM & PM. FM transmitter and receiver.	12
Digital baseband communication - Sampling: sampling of bandpass signals, Pulse Amplitude Modulation (PAM), Quantization, Pulse Code Modulation (PCM), Differential PCM, Delta modulator-Power and bandwidth efficiency, Line coding schemes	13
 Pulse shaping- Inter Symbol Interference (ISI) - Nyquist criterion for zero ISI. Eye pattern. Correlative level coding - Duobinary coding, precoding, modified duobinary coding, generalized partial response filtering. Representation of a signal in signal space, Gram Schmidt orthogonalization, Cauchy-Schwarz inequality- Digital baseband transmission in AWGN channel - Matched filter receiver, Correlation receiver. 	13
IV Digital passband communication - Modulation techniques: Amplitude shift keying, Binary phase shift keying-– method of generation and detection, Probability of error, binary frequency shift keying – Probability of error.	12
 M-ary digital modulation schemes - MPSK, MFSK, MASK and QAM method of generation and detection – Probability of error – Power-Bandwidth tradeoff. Introduction to Spread spectrum communication- direct sequence and frequency hoping spread spectrum 	10
Total Hours	60

vii. ASSESSMENTPATTERN

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5marks
Assignments	:	15marks
Assessment through Tests	:	20marks
Total Continuous Assessment		40marks
End Semester Examination	:	60marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- •No. of tests:02
- •Maximum Marks:30
- •Test Duration:11/2hours
- •Topics:21/2modules

END SEMESTER EXAMINATION

- •Maximum Marks:60
- •Exam Duration:3hours

Course Code	Course Name		Category	L	т	Ρ	J	Credit	Year of Introduction	
23ECL30B	DIGITA PROCE			PCC	3	1	0	0	4	2023
i. PREREQ	UISITE	23E	ECL20E –	Signals and	d Sy	/ste	ems			
ii. COURSE	OVERVI	EW								
	of DSP, a	analys	sis of discre	ete signals ii	n tir	ne a	and	free	quency c	lgorithms and lomain, design s.
iii. COURSE		MES								
After the cor	npletion c	of the	course, the	e student wil	ll be	e ab	le to	D :		
Course Description						Level				
CO1 Analyze discrete time signals and systems in time and frequency domains.						Apply				
CO2 Design digital FIR filters for specific applications using various techniques and their implementation.						Apply				
CO3 Design analog and digital IIR filters for specific applications using various techniques and their implementation.					Apply					
CO4	-	Explain the basic design aspects of DSP systems using TMS320C6713 processor.					Understand			
CO5	Analyze	Analyze multirate digital signal processing systems.						Apply		
iv. SYLLAB	US									

Discrete Fourier Transform and its Properties, Linear filtering of long duration sequences – overlap add and save algorithms, Frequency analysis of signals using the DFT, Computation of DFT,

FFT Algorithms, IDFT computation using Radix-2 FFT Algorithms, Efficient computation of DFT of two real sequences and a 2N-Point real sequence,

Design of FIR Filters, Design of linear phase FIR Filters using window methods and frequency sampling method, FIR Filter Structures.

Design of IIR Digital Filters from Analog Filters, IIR Filter Design, Frequency Transformations, IIR Filter Structures,

Introduction to TMS320C67xx digital signal processor, Multi-rate Digital Signal Processing, Finite word length effects in DSP systems, IIR digital filters, FFT algorithms.

v (a) Tl	EXT BOOKS	
1.	Proakis J. G	and Manolakis D. G., Digital Signal Processing, 4/e, Pearson
<u> </u>	<u> </u>	

B. Tech in Electronics and Communication Engineering

, v	Educ	ation, 2007				
2.		V Oppenheim, Ronald W. Schafer, Discrete-Time Signal				
		essing, 3 rd Edition, Pearson, 2010				
3.		S. K., Digital Signal Processing: A Computer Based Approa raw Hill (India), 2014	ch, 4/e,			
(b) F		RENCES				
1.		hor E.C. and Jervis B. W., Digital Signal Processing: A Practical oach, 2/e, Pearson Education, 2009				
2.			okware			
3.		ahanan S, Digital Signal Processing,4e, McGraw Hill Education, 2019.	on New			
vi. CO	URSE	PLAN				
Mod	ule	Contents	Hours			
I		Basic Elements of a DSP system, Typical DSP applications – an overview, Finite- length discrete transforms, Orthogonal transforms – The Discrete Fourier Transform: DFT as a linear transformation (Matrix relations), Relationship of the DFT to other transforms, IDFT, Properties of DFT and examples. Circular convolution, Linear Filtering methods based on the DFT, linear convolution using circular convolution, Filtering of long data sequences, overlap save and overlap add methods, Frequency Analysis of Signals using the DFT (concept only required)	13			
II	Efficient Computation of DFT: Fast Fourier Transform Algorithms- Radix-2 Decimation in Time and Decimation in Frequency FFT Algorithms, IDFT computation using Radix-2					
III	Image: Real Sequence Design of FIR Filters - Symmetric and Anti-symmetric FIR Filters, Design of linear phase FIR filters using Window methods, (rectangular, Hamming and Hanning) and frequency sampling method, Comparison of design methods for Linear Phase FIR Filters. Structures for the realization of Discrete Time Systems - Block diagram and signal flow graph representations of filters, FIR Filter Structures: Linear structures, Direct Form, Cascade Form.					
IV	,	Design of IIR Digital Filters from Analog Filters (Butterworth), IIR Filter Design by Impulse Invariance, and Bilinear Transformation, Frequency Transformations in the Analog and Digital Domain.	12			

THE OF ENGINE	
	P

v	Structures for the realization of IIF filters - Direct Form, Transposed Form, Cascade Form, and Parallel Form, Computational Complexity of Digital filter structures.	
	Multi-rate Digital Signal Processing: Decimation and Interpolation (Time domain and Frequency Domain Interpretation only), anti- aliasing and anti-imaging filters.	13
v	Computer architecture for signal processing: Harvard Architecture, Introduction to TMS320C67xx digital signal processor, Functional Block Diagram.	
	Finite word length effects in DSP systems: Introduction (analysis not required), fixed-point and floating-point DSP arithmetic, ADC quantization noise, Finite word length effects in IIR and FIR digital filters: coefficient quantization errors. Finite word length effects in FFT algorithms: Round off errors	
	Total Hours	60

vii. ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment		40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- •No. of tests: 02
- •Maximum Marks: 30
- •Test Duration: 11/2 hours
- •Topics: 21/2 modules

END SEMESTER EXAMINATION

- •Maximum Marks: 60
- •Exam Duration: 3 hours

Course Code	Cou	rse N	lame	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL30C	ELECTROMAGNETIC FIELD THEORY			PCC	3	1	0	0	4	2023
i. PREREQ	UISITE			/ector Calcu ngineering F		sics		1		
ii. COURSE	OVERVI	EW								
fields, the c	oncepts o	of refl	ection and	refraction	for	nor	ma	l ar	nd obliqu	and magnetic le incidence, of EM waves.
iii. COURSE										
After the cor	mpletion o	f the	course, the	e student wil	l be	e ab	le to	D:		
Course Outcomes			C	Description						Level
CO1		Apply the concepts of vector algebra in electromagnetic field theory.							Apply	
CO2	Apply								Apply	
CO3	Analyse	Analyse electromagnetic wave propagation and wave polarization in different media.						Apply		
CO4		Analyse the parameters of transmission lines using Smith						Apply		
CO5	_	Analyse the different modes of propagation in Waveguides.						Apply		
iv. SYLLAB Introduction divergence a Electric field equation. De Magnetic fie	to Electro and Lapla theory – r erivation o	cian i eview f capa	n cartesiar / of differer acitance ar	n, cylindrical nt laws, deten nd energy sto	ano rmir orec	d sp natio d in	ohei on o Eleo	rica of E ctric	l coordin and V us field.	ate system. ing Laplace
stored in Ma between sca laws. Bound Solution of v	agnetic fie alar poten lary condit vave equa	ld. Dia tial ar tion of ation.	splacemen nd vector p electric fie Propagatic	t current de otential. Mai eld and magr on of plane E	nsity xwe netio	y, c ell's c fie wav	onti equ Id. e in	nuil iatio pe	y equation on from f	on. Relation undamental ectric, lossy
medium, go depth. Refle normal & ob refraction, B Power dens	ection and blique incio rewster ar	refra dence ngle.	ction of pl – parallel	ane electror and perper	nag Idici	inet ular	ic w pol	ave lariz	es at bou ation, S	undaries for nell's law of

line – line parameters. Transmission line equations, Voltage and Current distribution of a line terminated with load. Reflection coefficient and VSWR. Derivation of input impedance of transmission line.

Transmission line as circuit elements (L and C). Development of Smith chart - calculation of line impedance and VSWR using smith chart. The hollow rectangular wave guide –modes of propagation of wave - dominant mode, group velocity and phase velocity.

v (a) T	EXT BOOKS	
1.	John D. Krau	s, Electromagnetics, 5/e, TMH, 2010.
2.	Mathew N C Press, 6/e, 20	9 Sadiku, Elements of Electromagnetics, Oxford University 114.
3.	William, H. ⊦ McGraw-Hill,	layt, and John A. Buck, Engineering Electromagnetics, 8/e 2014
(b) F	REFERENCES	
1.	Edminister, S	chaum's Outline of Electromagnetics, 4/e, McGraw-Hill, 2014.
2.	Jordan and B 2/e,2013	almain, Electromagnetic waves and Radiating Systems, PHI,
3.	Martin A Plon	us, Applied Electromagnetics, McGraw Hill, 2/e,1978.
4.	Nannapaneni Pearson, 6/e,	Narayana Rao, Elements of Engineering Electromagnetics, 2006
5.	Umran S. Ina 2010.	n and Aziz S. Inan, Engineering Electromagnetics, Pearson,

vi. COURSE PLAN

Module	Contents	Hours
I	 Introduction to Electromagnetic Theory – Review of vector calculus- curl, divergence gradient. Rectangular, cylindrical and spherical coordinate systems. Expression of curl divergence and Laplacian in cartesian, cylindrical and spherical coordinate system. Electric field theory – Review of Coulomb's law, Gauss' law. Poisson and Laplace equations, Determination of E and V using Laplace equation. Derivation of capacitance of two wire transmission line and coaxial cable, Energy stored in Electric field. 	13
II	 Magnetic field theory – Ampere's current law, Derivation of inductance of two wire transmission line and coaxial cable. Energy stored in Magnetic field. Displacement current density, continuity equation. Magnetic vector potential. Relation between scalar potential and vector potential. Maxwell's equation – Maxwell's equations from fundamental laws. Boundary condition of electric field and magnetic field from Maxwell's equations. Solution of wave equation. 	11
III	Propagation of plane EM wave – propagation in perfect dielectric, lossy medium, good conductor, media-attenuation,	12

B. Tech in Electronics and Communication Engineering

	Total Hours	60
v	 Smith chart - Development of Smith chart, calculation of line impedance, VSWR, input impedance, admittance, location of minimum and maximum voltages. Waveguides - The hollow rectangular waveguide – modes of propagation of wave dominant mode, group velocity and phase velocity 	12
IV	Power density of EM wave – Poynting vector theorem.Transmission line – Uniform lossless transmission line - lineparameters. Transmission line equations Voltage and Currentdistribution of a line terminated with load. Reflection coefficientand VSWR. Derivation of input impedance of transmissionline. Transmission line as circuit elements (L and C).	12
	phase velocity, group velocity, skin depth. Reflection and refraction – reflection and refraction of plane electromagnetic waves at boundaries for normal & oblique incidence – parallel and perpendicular polarization, Snell's law of refraction, Brewster angle.	

vii. ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- •No. of tests: 02
- •Maximum Marks: 30
- •Test Duration: 11/2 hours
- •Topics: 21/2 modules

END SEMESTER EXAMINATION

- •Maximum Marks: 60
- •Exam Duration: 3 hours

Course Code	Co	urse Na	ame	Category	L	т	Р	J	Credit	Year of Introduction	
	MANA	GEME	NT								
23HSL00A	FOR E	INGINE	ERS	HSC	3	0	0	0	3	2023	
i. PREREQU	ISITE	Nil									
ii. COURSE	OVER	/IEW									
The objective of the course is to introduce the basic concepts and functions of management, highlight its role in organizational performance, and explore decision-making approaches that help managers achieve excellence.											
iii. COURSE	OUTC	OMES									
After the com	npletion	of the c	ourse, t	he student v	vill k	be a	ble	to:		_	
Course Outcomes				Descriptior	ו					Level	
CO1			charact / context	eristics of t.	ma	anaę	gem	ent	in the	Understand	
CO2	Sumn	narize tł	ne functi	ons of mana	ns of management.						
CO3	Apply the concepts of decision productivity measurement to e effectiveness.					Apply					
CO4				et management techniques to determine es and completion probabilities.						Apply	
CO5			unctiona treprene	al areas of eurship	mai	nag	em	ent	and the	Understand	

iv. SYLLABUS:

Introduction to management theory - Characteristics of Management, Introduction to management theory, System approaches to Management, Levels of Manager and Skill required.

Management and organization - Functions of Management, Planning types, Principles of organisation, Organisation Structures. Staffing, Leading and Controlling.

Productivity and decision making - Concept of productivity and its measurement. Decision making process, Decision trees;

Project management- Network construction, CPM and PERT

Networks, Scheduling computations, PERT time estimates, Probability of completion of project.

Functional areas of management- Operations management, Human resources management, Marketing management, Financial management, Entrepreneurship, Business plans, Corporate social responsibility.

v (a) TEXT BOOKS

- 1. H. Koontz, and H. Weihrich, Essentials of Management: An International Perspective. 10th ed., McGraw-Hill, 2015.
- 2. P. Kotler, K. L. Keller, A. Koshy, and M. Jha, Marketing Management: A South Asian Perspective. 15th ed., Pearson, 2016.
- 3. R. D. Hisrich, and M. P. Peters, Entrepreneurship: Strategy, Developing, and Managing a New Enterprise, 11th ed., McGraw-Hill Education, 2020.
- 4. M. Y. Khan, and P. K. Jain, Financial Management, Tata-McGraw Hill, 2020.

(b) REFERENCES

- 1. R. B. Chase, Ravi Shankar and F. R. Jacobs, Operations and Supply Chain Management, 15th ed. McGraw Hill Education (India), 2018.
- 2. P C Tripathi and P N Reddy, Principles of management, TMH, 5th edition, 2012.
- 3. K. Ashwathappa, Human Resources and Personnel Management, TMH, 7th edition, 2011.
- 4. D. J. Sumanth, Productivity Engineering and Management, McGraw-Hill Education, 2019.

vi. COURSE PLAN

Module	Contents	Hours
I	Management Definition, Characteristics of Management, Importance of Management, Management - Art or Science perspective, Evolution of Management - Introduction to Management Theories-Taylor's Scientific Management, Gilbreth's Motion Study, McGregor's Theory X and Theory Y, System Approach and Contingency Approach to Management, Henry Mintzberg's Managerial Roles, Levels of Management – Top, Middle, and Operational, Skills Required for Managers – Technical, Human, and Conceptual skills.	8
II	 Functions of Management - Planning, Organizing, Staffing, Leading, Controlling. Planning- Planning types- strategic, tactical and operational plans, Mission, Goals, Strategy, Programmes, Procedures, Steps in Planning. 	8

Canaartuse		
	Organising- Principles of Organisation, Delegation, Span of	
	Control, Organisation Structures.	
	Staffing- Selection process and employee training, Employee retention- Maslow's Hierarchy of Needs.	
	Directing and Leadership -Traits of a leader, Leader vs	
	Manager, Managerial grid model for leadership styles.	
	Controlling-Types of control: Preventive, Concurrent, and	
	Feedback.	
II	Concept of productivity and its measurement; Competitiveness- Cost Advantage and Differential advantage, Quality, Speed, Innovation. Decision making process; Steps, types - Programmed and Non- Programmed decisions. Decision making under uncertainty-Maximum Criterion, Minimax Criterion, Maximin Criterion, Laplace Criterion, Hurwicz Alpha Criterion, Decision making under risk – Expected Monetary Value, Expected Opportunity Loss, Decision trees.	10
IV	Project Management, Network construction, Arrow diagram, CPM and PERT to find critical paths, Critical Path Method - Determining Start and Finish Times: Earliest Start Time (ES), Earliest Finish Time (EF), Latest Start Time (LS), Latest Finish Time (LF), Float. Project Evaluation Review Technique PERT, PERT Time Estimates – Optimistic, Pessimistic, and Most Likely Time Calculations, Probability of completion of project.	10
V	Introduction to functional areas of management, Operations management, Human resources management, Marketing management, Financial management, Entrepreneurship- Characteristics and mindset of successful entrepreneurs Types of entrepreneurship- Small Business Entrepreneurship, Scalable Start up Entrepreneurship, Social Entrepreneurship, Corporate social responsibility.	9
	Total Hours	45

vii. ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- •No. of tests: 02
- •Maximum Marks: 30
- •Test Duration: 11/2 hours
- •Topics: 21/2 modules

END SEMESTER EXAMINATION

- •Maximum Marks: 60
- •Exam Duration: 3 hours

Cours Code		Course I	Name	Category	L	т	Р	J	Credit	Year of Introduction
23ECP3	^ 	COMMUNIC LAB	ATION	PCC	0	0	3	0	2	2023
i. PRER	EQU	ISITE	Analog ar	nd Digital Co	mm	unic	catio	n, Di	igital Sign	al Processing
ii. COUF	RSE	OVERVIEW								
-				-		-			-	eter of a digital ware-designed-
iii. COU	RSE	OUTCOMES								
After the	e com	pletion of the	course, th	e student wi	ll be	e abl	e to:			
Cours Outcom				Description	on					Level
CO 1	1	Implement s		otype circuit	s fo	rana	alog	and	digital	Apply
CO 2	2	Simulate the schemes.	e error perf	ormance of	vari	ous	digit	al m	odulation	Apply
CO 3	3	Develop har with softwar		ls to emulate radio.	Apply					
iv. SYLL	ABL	JS								
FM generation and demodulation using PLL, Generation and Detection of PCM/BPSK/ 16- QPSK/Delta modulated signals. Performance of Waveform Coding Using PCM, Pulse Shaping and Matched Filtering, Eye Diagram, Error Performance of BPSK, Error Performance of QPSK. Familiarization with Software Defined Radio, FM Transmission and Reception							CM, Pulse Error			
v. REFE	REN	ENCES								
1. Carl Laufer, The Hobbyist's Guide to the RTL-SDR: Really Cheap Software Defined Radio,4/e, Createspace Independent Publishing Platform,2015.						oftware Defined				
	2. Neel Pandeya, Implementation of a Simple FM Receiver in GNU Radio, https://kb.ettus.com/						idio,			
Ο.		Tranter, KS nunication Sy		•	•	• •				•
	Communication Systems Simulation with Wireless Applications, Prentice Hall, 2004 4. Digital Communication using GNU Radio, https://onlinecourses.nptel.ac.in/noc24_ee51/preview									

Expt	Contents
	Part A: Hardware Experiments
1	AM GENERATION AND DEMODULATION USING AD633
2	FM GENERATION AND DEMODULATION USING PLL
	Part B: MATLAB Experiments
1	FAMILIARIZATION OF COMMUNICATION TOOLBOX
2	PERFORMANCE OF WAVEFORM CODING USING PCM
_	1. Generate an arbitrary waveform with a DC offset so that it takes only positive amplitude value.
	2. Sample and quantize the signal using an uniform quantizer with number of representation levels L. Vary L. Represent each value using decimal to binary encoder.
	3. Compute the signal-to-noise ratio in dB.
	4. Plot the SNR versus number of bits per symbol. Observe that the SNR
	increases linearly.
3	PULSE SHAPING AND MATCHED FILTERING
	1. Generate a string of message bits.
	2. Use root raised cosine pulse $p(t)$ as the shaping pulse and generate the
	corresponding baseband signal with a fixed bit duration T_b . You may use roll off factor as $\alpha = 0.4$.
	3. Simulate transmission of baseband signal via an AWGN channel.
	4. Apply matched filter with frequency response $Pr(f) = P*(f)$ to the received
	signal. 5. Sample the signal at mT₀ and compare it against the message sequence.
4	ERROR PERFORMANCE OF BPSK
4	
	 Generate a string of message bits. Encode using BPSK with energy per bit E_b and represent it using points ir
	a signal-space.
	3. Simulate transmission of the BPSK modulated signal via an AWGN
	channel with noise variance N ₀ /2.
	4. Perform optimal detection (using ML or MAP detection), and estimate the
	probability of error as a function of E _b /N ₀
5	ERROR PERFORMANCE OF QPSK
	1. Generate a string of message bits.
	2. Encode using QPSK with energy per symbol Es and represent it using
	points in a signal-space.
	3. Simulate transmission of the QPSK modulated signal via an AWGN
	channel with variance $N_0/2$ in both I-channel and Q-channel.
	4. Perform optimal detection (using ML or MAP detection) and estimate the

V	probability of bit error as a function of E _b /N ₀
	Part C: GNU RADIO Related Ex
1	 FAMILIARIZATION WITH SOFTWARE DEFINED RADIO (HARDWARE AND CONTROL SOFTWARE) 1. Generate sinusoidal signal and plot the frequency spectrum 2. Add two sinusoidal signals and obtain frequency spectrum 3. Multiplication of two sinusoidal signals and obtain frequency spectrum 4. Add three sinusoidal signals and pass it through different filters: LPF, HPF, BPF, BSF
2	 FM RECEPTION 1. Receive digitized FM signal (for the clearest channel in the lab) using the SDR board. 2. Set up an LPF and FM receiver using GNU Radio. 3. Use appropriate sink in GNU Radio to display the spectrum of signal. 4. Resample the voice to make it suitable for playing on a computer speaker.

Vii. ASSESSMENT PATTERN

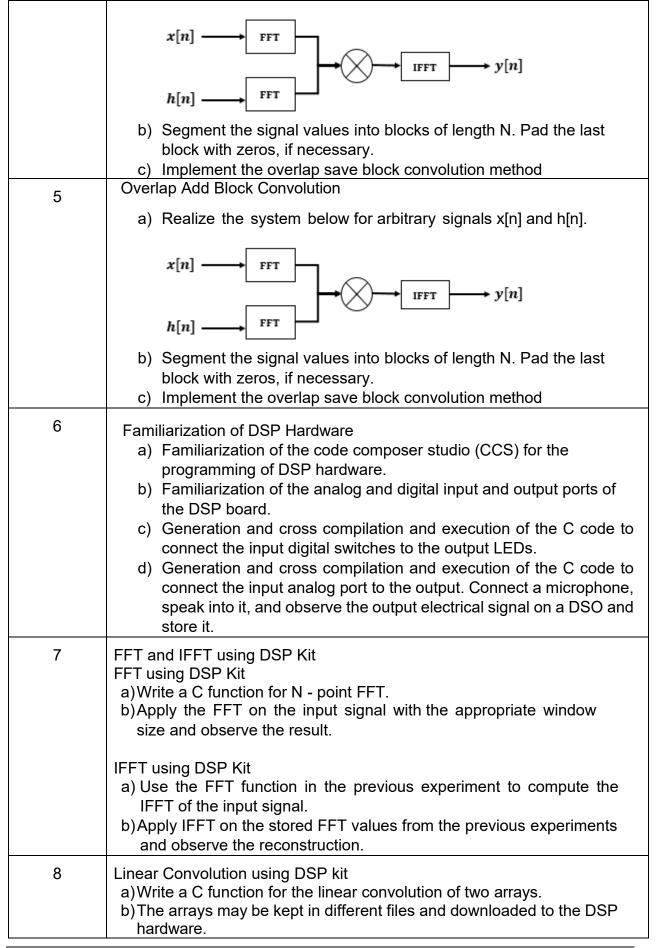
Continuous Assessment : End Semester Examination – 60 : 40

Continuous Assessment		
Attendance	:	5 marks
Continuous assessment in Lab (Lab work + Record + Viva-voce)	:	35 marks
Internal Lab Test (Hardware lab : Written exam including design	:	20 marks
Software lab : Lab exam		
Total Continuous Assessment	:	60 marks
End Semester Examination	:	40 marks
TOTAL	:	100 Marks

FINAL ASSESSMENT

- Maximum Marks : 40
- Exam Duration : 3 hours

Final Assessment		
Preliminary Work	:	10 marks
Implementing the work / Conducting the experiment	g :	10 marks
Viva Performance, result and inference (usage of equipment and troubleshooting)	:	10 marks 10 marks
Total Final Assessment	:	40 marks



Course Code	Course Nam	е	Categor y	L	т	Р	J	Credit	Year of Introduction
23ECP30B	DIGITAL SIGNA PROCESSING L		PCC	0	0	3	0	3	2023
i. PREREQUISITE			SB10D - Pro CL20E - Si	•		•			
ii. COURSE (OVERVIEW								
	ne students to ex on of various syste								on and
iii. COURSE	OUTCOMES								
After the com	pletion of the cou	rse, tl	he student v	vill k	e al	ble t	o:		
Course Outcomes			Descripti	on					Level
CO1	Generate digital s	-	-						Understand
CO2	Analyse the properties of DFT using simulation tool.						Apply		
CO3	Design real time filters using DSP hardware.						Analyse		
CO4	Analyse LTI systems using convolution.						Apply		
CO5	Analyse signals u	-				<u> </u>			Analyse
CO6	-	-	ignals using IIR low pass filter ms with block convolution and FFT.						Analyse
C07		ins v	WIT DIOCK C	20110	oiut		anu		Analyse
iv. SYLLABU	IS								
Sir	mulation of basic s	signa	ls						
Ve	rification of the Pr	oper	ties of DFT						
	ectrum Analysis u	•							
-	verlap Save and O	•		< Co	nvo	lutio	ns		
	 Verification of 								
E o	miliarization of DS			JUIT	y 01				
Га									
	Glowing LED								
	Tone Genera								
FF	T and IFFT using	DSP	Kit						
Lir	near Convolution u	using	DSP Kit						
Re	al Time filtering o	f sign	nals						
	igh pass filt	ers							

V	
v. REF	FERENCES
1.	Vinay K. Ingle, John G. Proakis, Digital Signal Processing Using MATLAB.
2.	Allen B. Downey, Think DSP: Digital Signal Processing using Python.
3.	Rulph Chassaing, DSP Applications Using C and the TMS320C6x DSK (Topics in Digital Signal Processing)
vi. CO	OURSE PLAN
Ex	contents
1	Simulation of basic signals like impulse, step, ramp, exponential, and sinusoidal signals using MATLAB.
2	Verification of the Properties of DFT
	 a) Generate and appreciate a DFT matrix. i. Write a function that returns the N point DFT matrix A_N for a given N. ii. Plot its real and imaginary parts of A_N as images using <i>imshow</i> in MATLAB for N = 16, N = 64 and N = 1024 iii. Compute the DFTs of 16 point, 64 point and 1024 point random sequences using the above matrices. iv. Observe the time of computations for N = 2γ for 2≤ γ ≤18. v. Use some iterations to plot the times of computation against γ. Plot and understand this curve. Plot the times of computation for the FFT function over this curve and appreciate the computational saving with FFT. b) Circular Convolution. i. Write a MATLAB function <i>circcon.m</i> that returns the circular convolution of an N1 point sequence and an N2 point sequence given at the input. ii. Function can be based on conversion from linear convolution into circular convolution with N = max(N1, N2).
	c) Parseval's Theorem i. For the random sequences $x_1[n]$ and $x_2[n]$ $\sum_{n=0}^{N-1} x_1[n]x_2^*[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_1[k]X_2^*[k]$ ii. Generate two random complex sequences. iii. Prove the theorem for these signals.
3	 a) Generate an arbitrary complex signal. For eg: AM or FM signal b) Simulate the spectrum of the signal and verify sampling theorem
4	
	a) Realize the system below for arbitrary signals x[n] and h[n].

V	
	c) Store the result as a file and observe the output.
0	Real time filtering – IIR low pass and high pass filters
9	a) Use MATLAB to implement the IIR filter response with impulse
	response h[n].
	b) Observe the low pass and high pass responses in the simulator.
	c) Download the filter on to the DSP target board and test with
	1mV sinusoid from a signal generator connected to the analog
	port.
	d) Test the operation of the filters.

iv. ASSESSMENT PATTERN

Continuous Assessment : Final Assessment – 60 : 40

Continuous Assessment		
Attendance :		5 marks
Continuous Assessment in Lab (Lab : work + Record + Viva - voce)		35 marks
Internal Lab test (Hardware lab : Written exam		20 marks
including design Software lab : Lab exam		
Total Continuous Assessment	:	60 marks
Final Assessment	:	40 marks
TOTAL	:	100 marks

FINAL ASSESSMENT

- Maximum Marks : 40
- Exam Duration : 3 hours

Total Final Assessment	:	40 marks
Viva Performance, result and inference (usage of equipment and troubleshooting)	:	10 marks 10 marks
Implementing the work / Conducting : the experiment		10 marks
Preliminary Work		10 marks
Final Assessment		

PROGRAMME ELECTIVE -I

Course Code	Co	urse Na	me	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL31A	DIGITA DESIG	AL SYST N	EM	PEC	2	1	0	0	3	2023
i. PREREQUISITE		TE 23ECJ20C- Logic Circuit Design								
ii. COURSE OVERVIEW										
This course introduces methods for designing and synthesizing digital systems. It provides a comprehensive understanding of behavioral and structural design techniques, logic synthesis, and post-synthesis validation.						•				
iii. COURSE	OUTCO	OMES								
After the corr	npletion	of the co	ourse, the	e student wil	ll be	e ab	le to	D:		
Course Outcomes			Γ	Description						Level
CO1	•	Explain structural and behavioral design techniques for digital systems.					Understand			
CO2	Apply design principles to implement combinational and Apply sequential circuits.									
CO3	Explain the working of data path controllers and processor Understand				Understand					
CO4		synthesi nentatior		ques using F	PLD	s fo	or di	gita	l system	Apply
CO5	Explai	n timing	verificati	on and fault	sim	ulat	ion	tec	hniques.	Understand

iv. SYLLABUS

Review of Combinational and Sequential logic design – Structural models of combinational logic – Propagation delay – Behavioral Modeling – Boolean equation based behavioral models of combinational logic – Cyclic behavioral model of flip-flop and latches – A comparison of styles for behavioral modeling – Design documentation with functions and tasks

Review of logic design, behavioral and structural modeling, flip-flops, functions and tasks, Logic synthesis, gated clocks, resets, design traps, partitioning, Controller/datapath design, RISC processor, ALU, UART, PLDs, CPLDs, FPGAs, pipelined designs, clock domain issues, Post-synthesis timing, BIST, fault simulation

v (a) TEXT BOOKS

Congasting and Congasting									
1.	Michael D. Ciletti, "Advanced Digital Design with the VERILOG HDL, 2 nd Edition, Pearson Education, 2010.								
2.	M. Morris Mano & Michael D. Ciletti, Digital Design: With an Introduction to								
	Verilog HDL, VHDL, and SystemVerilog, Pearson, 6th Edition, 2017								
3.									
(h) E	Learning, 7 th Edition, 2013 REFERENCES								
. ,									
1.	Edition								
2.	, , , ,								
3.	 Ronald J. Tocci, Neal S. Widmer, Digital Systems: Principles and Applications Pearson, 11th Edition 								
vi. COl	JRSE	PLAN							
Mod	ule	Contents	Hours						
I	Review of Combinational and Sequential logic design – Structural models of combinational logic – Propagation delay – Behavioral Modeling – Boolean equation based behaviora models of combinational logic – Cyclic behavioral model of flip- flop and latches – A comparison of styles for behaviora modeling – Design documentation with functions and tasks		9						
11		Synthesis of Combinational and Sequential logic – Introduction to synthesis – Synthesis of combinational logic – Synthesis of sequential logic with latches – Synthesis of three-state devices and bus interfaces – Synthesis of sequential logic with flip-flops – Registered logic – State encoding – Synthesis of gated clocks and clock enables – Anticipating the results of synthesis – Resets – Synthesis of loops – Design traps to avoid – Divide and Conquer: partitioning a design.	9						
111	 Design and Synthesis of Datapath Controllers – Partitioned sequential machines – Design example: Binary counter – Design and synthesis of a RISC stored-program machine – Processor, ALU, Controller, Instruction Set, Controller Design and Program Execution – UART – Operation, Transmitter, Receiver. 		9						
IV	,	Programmable logic devices – Storage devices – Programmable Logic Array (PLA) – Programmable Array Logic (PAL) – Programmability of PLDs – Complex PLDs – Introduction to Altera and Xilinx FPGAs – Algorithms – Nested loop programs and data flow graphs – Functional units for	9						

V	addition, subtraction, multiplication and division – Multiplication of signed binary numbers and fractions.	
v	Postsynthesis Design Validation – Postsynthesis Timing Verification – Elimination of ASIC Timing Violations – False Paths – Dynamically Sensitized Paths – System Tasks for Timing Verification – Fault Simulation and Testing	9
	Total Hours	45

Continuous Assessment : End Semester Examination – 40 : 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 marks
	:

CONTINUOUS ASSESSMENT TEST

- No. of tests:02
- Maximum Marks:30
- Test Duration:1½ hours
- Topics:2¹/₂ modules

- Maximum Marks:60
- Exam Duration:3 hours

V									
Course Code	Course Na	me	Category	L	т	Р	J	Credit	Year of Introduction
23ECL31B	POWER ELECTRONIC	s	PEC	3	0	0	0	3	2023
i. PREREQUISITE		23ESI	10L- Basic	Eleo	ctro	nics	En	gineering)
ii. COURSE OVERVIEW									
	course is to pro cuits and their a		•	o the	e ba	asic	cor	ncepts of	various power
iii. Course	OUTCOMES								
After the con	npletion of the c	ourse,	the student	will	be a	able	to:		
Course Outcomes			Descriptio	n					Level
CO1	Describe th semiconductor		aracteristics hes.	0	f	vari	ous	power	Understand
CO2		Explain the principle of drive circuits and epublic circuits						Understand	
CO3	Explain the working of diode bridge rectifiers and Unde controlled rectifiers.					Understand			
CO4	Illustrate the Converters a		•						Apply
CO5	Explain the p	principle	e of power	eleo	ctro	nics	fo	various	Understand

iv. SYLLABUS

Power diodes, Power BJT, Power MOSFET and IGBT - static and dynamic characteristics, SCR and GTO

BJT and MOSFET drive circuits, Snubber circuits, Three phase diode bridge rectifiers, Single phase and three phase-controlled rectifiers.

Buck, Boost and Buck-boost DC-DC converters Waveforms and expression of DC-DC converters for output voltage, voltage and current ripple under continuous conduction mode. (No derivation required) Isolated converters: Flyback, Forward, Push Pull, Half bridge and Full bridge converters – Waveforms and governing equations (No derivation required)

Inverter topologies, Driven Inverters: Push-Pull, Half bridge and Full bridge configurations, Three phase inverter, Pulse width modulation

DC Motor Drives, Induction Motor Drives, Residential and Industrial applications.

v (a) T	EXT BOOKS	
1.	Umanand L, Power	Electronics: Essentials & Applications, Wiley India, 2015

B. Tech in Electronics and Communication Engineering

applications.

 Ned Mohan, Tore M Undeland, William P Robbins., Power Electron Converters, Applications, and Design, 3/e, Wiley India Pvt. Ltd, 2015 (b) REFERENCES Muhammad H. Rashid., Power Electronics: Circuits, Devices, and Applications, 4/e, Pearson Education India, 2014. Daniel W. Hart, Power Electronics, McGraw Hill, 2011. 	
 (b) REFERENCES 1. Muhammad H. Rashid., Power Electronics: Circuits, Devices, and Applications, 4/e, Pearson Education India, 2014. 	
Applications, 4/e, Pearson Education India, 2014.	
Applications, 4/e, Pearson Education India, 2014.	
i. COURSE PLAN	
Module Contents Ho	urs
Power diodes and Bipolar power transistors structure, static and dynamic characteristics Power MOSFET and IGBT – structure, static and dynamic characteristics SCR and GTO construction and characteristics	9
II BJT and MOSFET driver circuits (atleast two circuits each) Snubber circuits–ON and OFF snubbers. Three phase diode bridge rectifiers – basic principles only Single phase and three phase Controlled rectifiers (with R, RL & RLE loads) – basic principles only. (Simulate the basic circuits)	9
Buck, Boost and Buck-Boost DC-DC converters waveforms and expression of DC-DC converters for output voltage, voltage and current ripple under continuous conduction mode. (No derivation required) III Isolated converters: Fly-back, Forward, Push-Pull, Half bridge and Full bridge converters – Waveforms and governing equations. DC-AC Switch Mode Inverters	0
vector modulation PWM in three phase inverters	9
V DC Motor Drives – Adjustable-speed DC drive Induction Motor Drives – Variable frequency PWM-VSI drives Residential and Industrial applications. §	8
Total Hours 4	5

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Ormerten Erreminetien		60 marks
End Semester Examination	•	
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests:02
- Maximum Marks:30
- Test Duration:1½ hours
- Topics:2¹/₂ modules

- Maximum Marks:60
- Exam Duration:3 hours

Course Code	Cou	urse N	lame	Category	L	т	Ρ	J	Credit	Year of Introduction		
23ECL31C	MECHATRON		ONICS	PEC	3	0	0	0	3	2023		
i. PREREQUISITE Nil		Nil										
ii. COURSE OVERVIEW												
	This course introduces students to the rapidly emerging, multi-disciplinary, and exciting field of Mechatronics							ciplinary, and				
iii. COURSE	оитсо	MES										
After the con	npletion c	of the	course, the	e student wil	l be	e ab	le to	o:				
Course Outcomes	Description					Level						
CO1	Explain the working principles of various sensors and actuators in Mechatronics systems.						Understand					
CO2	Simulat	te mo	dels of me	echatronics	sys	sten	ns.			Apply		
CO3	Explain the implementation of PLC in mechatronics Understan applications.					Understand						
CO4				d fabrication fabr			chn	iqu	es and	Understand		
CO5	Design applica		mechatr	onics syst	em	S	for	re	al time	Apply		

iv. SYLLABUS

Introduction to Mechatronics: Structure of Mechatronics system. Comparison between traditional and mechatronics approach. Sensors - Characteristics -Temperature, flow, pressure sensors. Displacement, position and proximity sensing by magnetic, optical, ultrasonic, inductive, capacitive and eddy current methods. Encoders: incremental and absolute. Resolvers and synchros. Piezoelectric sensors. Acoustic Emission sensors. vibration sensors. Force and tactile sensors. Range finders: ultrasonic and light base range finders.

Actuators: Hydraulic and Pneumatic actuators - Directional control valves, pressure control valves, process control valves. Rotary actuators. Development of simple hydraulic and pneumatic circuits using standard Symbols. Electrical drives: DC, AC, brushless, servo and stepper motors. Harmonic drive. Magnetostrictive actuators and piezoelectric actuators.

System modelling - Mathematical models and basic building blocks of general mechanical, electrical, fluid and thermal systems. Typical elements of open and closed loop control systems. Adaptive controllers for machine tools. Programmable Logic Controllers (PLC) – Basic structure, input/ output processing. Programming: Timers, Internal Relays, Counters and Shift registers. Development of simple

ladder programs for specific purposes.

Micro Electro Mechanical Systems (MEMS): Fabrication: Deposition, Lithography, Micromachining methods for MEMS -Surface and Bulk, Deep Reactive Ion Etching (DRIE) and LIGA processes. Principle, fabrication and working of MEMS based pressure sensor, accelerometer and gyroscope.

Mechatronics in Robotics- choice of Sensors and Actuators. Robotic vision system – Image acquisition: Vidicon, charge coupled device (CCD) and charge injection device (CID) cameras. Image processing techniques: histogram processing: sliding, stretching, equalization and thresholding. Case studies of Mechatronics systems: Automatic camera, bar code reader, simple weighing machine, pick and place robot, automatic car park barrier system, automobile engine management system

v (a) T	EXT BOC	KS					
1.		N., Mechatronics: Electronic Control Systems in Mechanic al Engineering, Person Education Limited, New Delhi, 2007	cal and				
2.	Ramach Mechatr	andran K. P., G. K. Vijayaraghavan, M. S. Balasun onics: Integrated Mechanical Electronic Systems, Wiley Inc w Delhi, 2008.					
3.	Person Education, Inc., New Delhi, 2006.						
4.	. Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", Thomson Learning Publishing Company, Vikas publishing house, Second edition, 2001.						
(b) F	REFEREN	ICES					
1.		. Aldatore, Michael B. Histand, Introduction to Mechatroni ement Systems, McGraw-Hill Inc., USA, 2003.	cs and				
2.		M. Mair, Industrial Robotics, Prentice Hall International, UK,	1998.				
3.		lechatronics, Tata McGraw-Hill Publishing Company Ltd					
4.	and ME	Varadan, K. J. Vinoy, S. Gopalakrishnan, Smart Material Sy MS: Design and Development Methodologies, John Wiley & gland, 2006.					
5.		Robert H. The Mechatronics Handbook-2 Volume Set. CRC	press,				
vi. CO	URSE PL	AN					
Mod	ule	Contents	Hours				
I	s a p s	ntroduction to Mechatronics: Structure of Mechatronics ystem. Comparison between traditional and mechatronics pproach. Sensors - Characteristics -Temperature, flow, ressure sensors. Displacement, position and proximity ensing by magnetic, optical, ultrasonic, inductive, apacitive and eddy current methods. Encoders:	9				

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Co	urse Name	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL31D	DSP ARCHI	TECTURES	PEC	3	0	0	0	3	2023
			· · · ·	-				<u>ь</u> .	

i. **PREREQUISITE** 23ECJ20F-Microcontroller-Based System Design

ii. COURSE OVERVIEW

This course aims to introduce the architecture and features of DSP processors, familiarize students with programming concepts and development tools for DSPs, study design considerations for high-performance DSP architectures, and explore advanced DSP processors and their real-time applications.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Explain the fundamental requirements of DSP systems and differentiate between general-purpose and DSP- specific architectures.	Understand
CO2	Describe the architectural features of typical DSP processors and explain their suitability for real-time applications.	Understand
CO3	Develop DSP algorithms using assembly-level or low-level programming and interface peripherals with DSP processors.	Apply
CO4	Compare advanced DSP architectures like TMS320C6x and Blackfin for performance optimization.	Understand
CO5	Demonstrate awareness of recent advancements such as multicore DSPs, low-power design, and DSP integration in modern applications.	Understand

iv. SYLLABUS

Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison.

Numerical representations, Harvard and modified Harvard architectures, Pipelining and parallelism in DSP

Fundamentals of DSP Processor Architectures: Features of DSP processors: Multiplyaccumulate unit (MAC), special addressing modes, instruction pipelining.

Architectural details of: Texas Instruments TMS320C54xx/ C55xx, Analog Devices ADSP-21xx.

Memory architecture, buses, interrupts and DMA, addressing modes and instruction

set overview.

Programming and Interfacing of DSP Processors: Assembly programming basics, Looping, branching, and conditional execution, Real-time implementation of DSP algorithms (e.g., FIR/IIR filters, FFT).

Interfacing peripherals: ADC, DAC, serial ports, DSP development tools and simulators (e.g., Code Composer Studio).

Advanced DSP Architectures: Introduction to VLIW (Very Long Instruction Word) architecture, Detailed study of Texas Instruments TMS320C6x series (C6000 family), Software pipelining and optimization techniques.

Brief overview of Analog Devices Blackfin Processor architecture, DSP system-on-chip (SoC) design concepts.

Emerging Trends and Applications: Multicore DSPs and heterogeneous processors, Introduction to Digital Signal Controllers, Overview of AI/ML accelerators integrated with DSP cores.

Case studies: DSP in audio, video, biomedical, and communication systems.

1. Avtar Singh and S. Srinivasan, Digital Signal Processing: Implementations Using DSP Microprocessors with Examples from TMS320C54xx, Cengage Learning. 2. B. Venkataramani and M. Bhaskar, Digital Signal Processors – Architecture, Programming and Applications, Tata McGraw-Hill. 3. Rulph Chassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience. 4. Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. (b) REFERENCES 1. 1. Woon-Seng Gan and Sen M. Kuo, Embedded Signal Processing with the Micro Signal Architecture, Wiley. 2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors. 9 1 DSP processors. 9	v (a) T	v (a) TEXT BOOKS						
Architecture, Programming and Applications, Tata McGraw-Hill. 3. Rulph Chassaing, Digital Signal Processing and Applications with the C6713 and C6416 DSK, Wiley-Interscience. 4. Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. (b) REFERENCES 1. 1. Woon-Seng Gan and Sen M. Kuo, Embedded Signal Processing with the Micro Signal Architecture, Wiley. 2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Contents Module Contents Introduction to DSP Systems and Processors: Introduction to DSP systems, Comparison between general-purpose processors and DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures, 9	1.	Using DSP I						
C6713 and C6416 DSK, Wiley-Interscience. 4. Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide. (b) REFERENCES 1. Woon-Seng Gan and Sen M. Kuo, Embedded Signal Processing with the Micro Signal Architecture, Wiley. 2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Hours Introduction to DSP Systems and Processors: Introduction to DSP systems, Comparison between general-purpose processors and DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures, 9	2.	2. B. Venkataramani and M. Bhaskar, Digital Signal Processors –						
Guide. (b) REFERENCES 1. Woon-Seng Gan and Sen M. Kuo, Embedded Signal Processing with the Micro Signal Architecture, Wiley. 2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Module Introduction to DSP Systems and Processors: Introduction to DSP systems, Comparison between general-purpose processors and DSP processors. 9 I DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures, 9	3.			ith the				
1. Woon-Seng Gan and Sen M. Kuo, Embedded Signal Processing with the Micro Signal Architecture, Wiley. 2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Module Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors. I DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures,	4.		uments, TMS320C6000 CPU and Instruction Set Ref	erence				
Micro Signal Architecture, Wiley. 2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Module Contents Hours Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors. 9 I DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures, 9	(b) F	REFERENCE	6					
2. Analog Devices, Blackfin Processor Programming Reference Manual. 3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Module Contents Hours Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures, 9	1.	•		vith the				
3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Wiley. vi. COURSE PLAN Module Module Contents Hours Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors. 9 I Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures, 9	2.							
ModuleContentsHoursIntroduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors.9IDSP processors. Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures,9	3.	3. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and						
Introduction to DSP Systems and Processors: Introduction to DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors. 9 Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures,	vi. CO	URSE PLAN						
DSP systems and their applications., Requirements of DSP systems, Comparison between general-purpose processors and DSP processors.9IDSP processors.9Numerical representations: Fixed-point and floating-point arithmetic, Harvard and modified Harvard architectures,9	Mod	ule	Contents	Hours				
Pipelining and parallelism in DSP.	DS sys I DS Nur ariti		systems and their applications., Requirements of DSP ns, Comparison between general-purpose processors and rocessors. rical representations: Fixed-point and floating-point etic, Harvard and modified Harvard architectures,	9				

DS ado II Arc C5 Me	ndamentals of DSP Processor Architectures: Features of BP processors: Multiply-accumulate unit (MAC), special dressing modes, instruction pipelining. chitectural details of: Texas Instruments TMS320C54xx/ 5xx, Analog Devices ADSP-21xx mory architecture, buses, interrupts and DMA, addressing des and instruction set overview.	9
pro exe III FIF Inte dev	ogramming and Interfacing of DSP Processors: Assembly ogramming basics, Looping, branching, and conditional ecution, Real-time implementation of DSP algorithms (e.g., R/IIR filters, FFT). erfacing peripherals: ADC, DAC, serial ports, DSP velopment tools and simulators (e.g., Code Composer udio).	9
Ins Ins IV uni opt Brie	vanced DSP Architectures: Introduction to VLIW (Very Long struction Word) architecture, Detailed study of Texas struments TMS320C6x series (C6000 family), Functional its, data paths, cross paths, Software pipelining and timization techniques. ef overview of Analog Devices Blackfin Processor chitecture, DSP system-on-chip (SoC) design concepts.	9
v v Co Al/ Ca	nerging Trends and Applications: Multicore DSPs and terogeneous processors, Introduction to Digital Signal ntrollers, Low-power DSP design considerations, Overview of ML accelerators integrated with DSP cores. se studies: DSP in audio, video, biomedical, and mmunication systems.	9
	Total Hours	45

Continuous Assessment : End Semester Examination – 40 : 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 marks
	:

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Cou	irse Name	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL31E	COMPU ARCHIT	TER ECTURES	PEC	2	1	0	0	3	2023

i. PREREQUISITE : NIL

ii. COURSE OVERVIEW

Upon completion of this course, students will be able to: understand the role of functional units and architectural features; examine the data representation and execution procedure of an ALU; identify factors that degrade pipeline performance and countermeasures. The course covers basic computer structure, processing units, pipelining, memory systems, and I/O systems over 5 units. Students will learn about functional units, bus structures, instructions, addressing modes, arithmetic operations, pipelining, caches, virtual memory, and interfacing with I/O devices.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO 1	Realize the role of functional units and the various architectural features of a computer system	Understand
CO 2	Examine data representation and execution procedures of an ALU	Understand
CO 3	Identify the factors that degrade the pipeline performance and its counter measures.	Apply
CO 4	Evaluate and analyze the performance of memory	Apply
CO 5	Apply the different ways of communication with I/O devices and interfaces	Apply
CO 6	Explain the architecture of VEGA THEJAS32 Microcontroller.	Understand

iv. SYLLABUS

Functional units – bus structures – Memory operations – Instructions and sequencing – Instruction set architecture.

Number representations and operations – Instruction Execution – Bus organization

MIPS Implementations – Data path – Pipelining and Hazards - Exceptions

Semiconductor Memories – Cache Memories – Improving Cache Performance – Virtual Memory – Multithreading – Multi-Core processors

I/O Interfaces – Programmed I/O, Memory Mapped I/O, DMA. Multiprocessors – Characteristics-Communication and Synchronization, Multi core processors

		JAS32 Microcontroller : RISC-V Instruction Set Architecture, Regis odes, Programmers' Model for Base Integer ISA, Exceptions	01010,					
v (a) T	EXT B	BOOKS						
1.	PHI, India							
2.	William Stallings (2010), Computer Organization and Architecture- designing for performance, 8 th edition, Prentice Hall, New Jersey.							
3.	Carl Hamacher, Zvonks Vranseic, SafeaZaky (2002), Computer Organization, 5 th edition, McGraw Hill, New Delhi, India							
4.		rew S Tanenbaum (2006), Structured Computer Organization on, Pearson Education Inc	n, 5 th					
5.		C_V ISA Manual, "Volume 1, Unprivileged Spec v. 20191213 "						
(D) I 1.		RENCES P Hayes (1998), Computer Architecture and Organization, 3 rd ed	lition					
I.		McGraw Hill	aiuOH,					
2.		Rajiv Chopra (2013), Computer Architecture and Organizatio stical Approach), S.Chand	on (A					
vi. CO	URSE	PLAN						
Mod	Module Contents							
I		Basic Structure of Computers : Functional units, Operational Concepts, Bus structures, Performance, Memory Locations and Addresses, Memory Operations – Instructions and Instruction Sequencing, Instruction Set Architecture, Addressing Modes, I/O Operations	8					
II	Basic Processing Unit : Fixed point arithmetic, Addition and subtraction of signed numbers, multiplication of positive number signed operand multiplication and fast							
111	III Pipelining: A basic MIPS implementation, Building a data path, Control Implementation Scheme, Pipelining – Pipelined data path and control, Handling data hazards & control hazards, Exceptions.							
	Exceptions. Memory System: Semiconductor RAM, ROM – Speed and Cost, Cache Memory, Improving Cache performance, Mapping techniques, Improving Cache performance. Virtual memory – Overlay, Memory management, Address translation, Paging, Secondary Storage, RAID							

·	Input/Output Organization – Introduction, Synchronous vs. asynchronous I/O, Programmed I/O, Interrupt driven I/O, Direct Memory Access.	
	Multiprocessors - Characteristics, Interconnection structure, Inter Processor Arbitration, Inter processor communication and synchronization.	
V	VEGA THEJAS32 Microcontroller : RISC-V Instruction Set Architecture, Registers – General Purpose Registers, Control and Status Registers, Operating Modes, Programmers' Model for Base Integer ISA, Base Instruction Formats, Exceptions, Traps, and Interrupts.	10
	Total Hours	45

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	т	Р	J	Credit	Year of Introduction
23ECL31F	DATA STRUCTURES USING C	PEC	ფ	0	0	0	3	2023

i. PREREQUISITE 23ESB10D- Problem Solving and Programming in C

ii. COURSE OVERVIEW

This course introduces the fundamental concepts of data structures using the C programming language. It covers the design, implementation, and analysis of data structures such as arrays, linked lists, stacks, queues, trees, and graphs. The course emphasizes the application of these structures in solving real-world electronics and embedded systems problems. Through a combination of lectures and microprojects, students will develop a strong foundation in algorithmic thinking, programming, and data abstraction techniques relevant to electronics applications.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Construct simple programs using arrays, strings and structures using the C programming language.	Apply
CO2	Explain the concept of pointers and dynamic memory allocation in C to implement flexible data structures such as linked lists for control flow operations.	Understand
CO3	Discuss the concept of hierarchical data structures such as stacks, queues and trees.	Understand
CO4	Explain the concepts of linear and binary search algorithms, basic sorting techniques and the working of hash tables, including the role of hash functions and methods for handling collisions.	Understand
CO5	Describe basic graph terminology and types of graphs such as directed graphs and bi-connected components, and explain various methods for representing graphs.	Understand

iv. SYLLABUS

Role of data structures in embedded systems & electronics - Embedded vs generalpurpose programming, Introduction to Data Structures and Algorithms, Time and Space Complexity, Big O Notation. Arrays, Strings & Structures - 1D, 2D arrays, String manipulation in C, Types of structures. Pointers & Dynamic Memory – Pointers and arrays, arrays of pointers, malloc, free, memory leaks, Stack vs heap in microcontrollers.

Linked Lists – Basic terminologies, linked lists versus arrays, Singly, doubly, circular lists. Stacks & Queues – array representation of Stacks, Operations on a Stack, array

representation of Queues, types of queues. Trees – Types of trees, binary search trees. Searching and Sorting – Linear and binary search, introduction to sorting, types of sorting: Bubble sort, Insertion sort, Selection sort. Hash Tables – Hash tables and hash functions, Collision.

Graphs – Graph Terminology, Directed Graphs, Bi-connected Components, Representation of Graphs

v (a) TEXT BOOKS

1.		na Thareja, Data Structures Using C, 2 nd Edition, 2014, ersity Press	Oxford									
2.		navant Kanetkar, Data Structures Through C, 1 st Edition, 200 ications	3, BPB									
3.	Rich Pseu	Richard F. Gilberg and Behrouz A. Forouzan, Data Structures: A Pseudocode Approach with C, 2 nd Edition, 2004, Cengage Learning										
4.												
(b) I	REFEI	RENCES										
1.		ett, R.H., Cox, S., and O'Cull, L., Embedded C Programming a el AVR, 2 nd Edition, 2006, Cengage Learning	and the									
2.	Struc Profe	Robert Sedgewick, Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching, 3 rd Edition, 1997, Addison-Wesley Professional										
3.		Horowitz, Sartaj Sahni, and Susan Anderson-Freed, Fundame Structures in C, 2 nd Edition, 2008, Universities Press	ntals of									
vi. CO	URSE	PLAN										
Mod	ule	Contents	Hours									
1		 Role of data structures in embedded systems & electronics Embedded vs general-purpose programming, Introduction to Data Structures and Algorithms, Time and Space Complexity, Big O Notation Arrays, Strings & Structures - 1D, 2D arrays, String manipulation in C, Types of structures 	12									
II	Pointers & Dynamic Memory – Pointers and arrays, arrays of pointers, malloc, free, memory leaks, Stack vs heap in microcontrollers II Linked Lists – Basic terminologies, linked lists versus arrays, Singly, doubly, circular lists											
Stacks & Queues – array representation of Stacks, Operations on a Stack, array representation of Queues, types of queues												
IV	,	Trees – Types of trees, binary search trees. Searching and Sorting – Linear and binary search, introduction to sorting, types of sorting: Bubble sort, Insertion sort, Selection sort										

V	Graphs – Graph Terminology, Directed Graphs, Bi-connected Components, Representation of Graphs	7
	Total Hours	45

Continuous Assessment : End Semester Examination - 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignment	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

V										
Course Code	Course Name		Category	L	т	Ρ	J	Credit	Year of Introduction	
23ECL31G	BIOMEDICAL ENGINEERIN G		PEC	3	0	0	0	3	2023	
i. PREREQUISITE			l							
ii. COURSE OVERVIEW										

This course will introduce aspects of Biomedical Engineering as applied to biological systems described using engineering principles and the use of modern diagnostic and therapeutic equipment.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Explain the functioning of Cardio Vascular and Nervous system and generation of bioelectric potentials.	Understand
CO2	Describe the techniques used for diagnosis and therapy of the Cardio Vascular system.	Understand
CO3	Explain the techniques used for diagnosis and therapy of the neuromuscular and respiratory systems.	Understand
CO4	Explain the principle and working of different types of biomedical equipment/device.	Understand
CO5	Explain the principle and working of medical imaging techniques.	Understand

iv. SYLLABUS

Introduction to bio-medical engineering, overview of Cardio Vascular and Nervous system. Bio-electric potential: Resting and action potential, propagation of action potentials. Electrodes, Bio potential Amplifiers, Patient Safety.

Electro conduction system of the heart, ECG machine, Einthoven triangle, analysis of ECG signals. Measurement of blood pressure and blood flow.

Neuron, action potential of brain, brain waves, EEG recording, analysis of EEG. Electrical activity of muscles- EMG. Signal Acquisition and analysis. Applications. Physiology of respiratory system (overview), Respiratory parameters, spirometer, body plethysmograph, gas exchange and distribution.

Instruments for clinical laboratory, Therapeutic Equipment, Biomedical Telemetry

system.

Medical Imaging systems (Basic Principle only): X-ray imaging, Computed Tomography, Ultrasonic imaging systems and Magnetic Resonance Imaging.

v (a) ⁻	ТЕХТ В	BOOKS								
	ed., 2									
	2. Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomedical Instrumentation and Measurements, PHI, 2 nd ed., 1980									
(b)	(b) REFERENCES									
1.	1. John G Webster, "Medical Instrumentation application and design", John Wiley, 5 th ed., 2020									
2.	Educa	Carr, "Introduction to Biomedical Equipment Technology" ation, 4 th ed., 2000	, Pearson							
3.		rd Aston, "Principle of Biomedical Instrumentat urement". Merrill Publishing Company,1 ed., 1990.	ion and							
4.		ra Christe, Introduction to Biomedical Instrumentation, C rsity Press, 2 nd ed., 2017.	ambridge							
vi. CC	DURSE	PLAN								
Мос	dule	Contents	Hours							
I		 Introduction to Bio-medical Engineering, Heart and Cardio Vascular system, Human Nervous System. Bio-electric potentials: Resting and action potential, propagation of action potentials. Electrode theory: Nernst relation, Electrode skin interface, Biopotential electrodes: Microelectrodes, skin surface electrodes, needle electrodes. Bio potential amplifiers: instrumentation amplifier, carrier amplifier, isolation amplifier, chopper amplifier. Patient Safety: Electric shock hazards, leakage current. 	9							
11		Electro conduction system of the heart. ECG machine - block diagram, ECG lead configurations, Einthoven triangle, analysis of ECG signals. Measurement of blood pressure: Auscultatory method, oscillometric and ultrasonic non-invasive pressure measurements. Measurement of blood flow: Electromagnetic blood flowmeters and ultrasonic blood flow meters.	9							
III		Electrical activity of brain: Neuron, action potential of brain, brain waves, types of electrodes, placement of electrodes, evoked potential, EEG recording, analysis of EEG. Electrical activity of muscles: EMG, Signal Acquisition and analysis. Applications of EMG. Electrical stimulation of the muscle and nerve. Respiratory system: Physiology, Respiratory parameters,	9							

	Total Hours	45
v	 X-ray imaging: X-ray machine, applications of X- rays in medicine. Computed Tomography: Principle, image reconstruction, scanning system and applications. Ultrasonic imaging systems: Basic pulse echo system, propagation of ultrasonic through tissues and reflections, display types, applications. Magnetic Resonance Imaging: Basic NMR components, Biological effects and advantages of NMR imaging, applications. 	9
IV	 spirometer, body plethysmograph, gas exchange and distribution. Instruments for clinical laboratory: Pulse Oximeter, pH meter, blood cell counter, spectrophotometer. Therapeutic Equipment: Pacemaker, cardiac defibrillator, heart–lung machine, dialyzer, ventilator. Biomedical Telemetry system: Components of biotelemetry system, application of telemetry in medicine, single channel telemetry system for ECG. Medical Imaging systems (Basic Principle only) 	9

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment		40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

S5 MINOR

Course Code	Course Name			Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3MA	EMBEDDED SYSTEM DESIGN			MINOR	3	0	0	0	3	2023
i. PREREQUIS	SITE		CJ20C Logic (CJ20F Microce	0		Sys	sten	ר De	esign	
ii. COURSE O										
Goal of this c communicatior the ARM proce	n betwe	een pe	eripheral devi	ces and pro					-	
iii. COURSE C	оото	MES								
After the comp	letion o	of the o	course, the st	udent will be	e ab	le to	D:			
Course Outcomes	Description								Level	
CO1	Explain the basic concepts of embedded systems and different phases in the embedded system design process/EDLC.									
CO2	•		ial and paral nterfacing in e				•	otod	cols and	Understand
CO3	organ		e ARM p n, and the ets.							
CO4Summarize the different development tools and architectural features used in ARM-based embedded system applications.										
CO5 Develop ARM assembly programs to implement solutions for various embedded system tasks.								Apply		
iv. SYLLABUS Introduction to Embedded Systems: The Embedded System Design Process, Embedded product development cycle (EDLC).										

Interfacing and Communication Protocols: Serial Communication Standards and Devices, Serial Bus Protocols, Parallel communication standards, Peripheral interfacing: Timers, ADC/DAC, GPIO (basics).

ARM Microcontrollers & Architecture: ARM7 & ARM9 architecture, block diagrams & peripherals, ARM organization: 3-stage & 5-stage pipeline, instruction execution, ARM coprocessor interface.

ARM Assembly Language Programming: data processing, data transfer, control flow, Thumb instruction set: CPSR, programmer's model, branching, data transfer.

Architectural Support for System Development: ARM memory interface, AMBA bus architecture, Application examples: Audio Player, Engine Control Unit, Video Accelerator, Development tools: Keil IDE, debugging, flashing tools.

v (a) TE	XT BOOKS
1.	K.V. Shibu, Introduction to Embedded Systems, 2e, McGraw Hill Education India, 2016.
2.	Wayne Wolf, Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufman Publishers - Elsevier 3e, 2008.
3.	Steve Furber, ARM system-on-chip architecture, Addison Wesley, Second Edition, 2000.
4.	Raj Kamal, Embedded Systems Architecture, Programming and Design, TMH, Third Edition, 2017
(b) RI	EFERENCES
1.	David E. Simon, An Embedded Software Primer, First Indian Reprint, Pearson Education Asia, 2000.
2.	Steve Heath, Embedded Systems Design, Newnes – Elsevier 2/ed, 2002.
3.	Andrew N. Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide Designing Optimizing System Software, Morgan Kaufmann Publishers, 2004.
4.	Frank Vahid and Tony Givargis, Embedded Systems Design – A Unified Hardware/Software Introduction, John Wiley, 2002

V	
5.	Tammy Noergaard, Embedded Systems Architecture, A Comprehensive Guide
	for Engineers and Programmers, Newnes – Elsevier 2/ed, 2013.
6.	Iyer - Embedded Real time Systems, 1/e, McGraw Hill Education New Delhi,
	2003.
7.	Lyla B. Das, Embedded Systems: An Integrated Approach, 1/e, 2012.
8.	Shujen Chen, Muhammad Ali Mazidi, Eshragh Ghaemi, STM32 Arm
	Programming for Embedded Systems, 2018.

vi. COURSE PLAN

Module	Contents	Hours
	Introduction to Embedded Systems Introduction to embedded systems - Current trends and challenges - Applications of embedded systems, Characteristics, and quality attributes of an embedded system	8
•	The Embedded System Design Process: Requirements, Specification, Architecture Design, Designing Hardware and Software Components and System Integration. Embedded product development cycle (EDLC): Different phases of EDLC and EDLC models.	0
	Interfacing and Communication Protocols	7
II	Serial Communication Devices and Standards: UART, HDLC, SPI, Serial Bus Protocols: I2C, CAN, USB, Parallel Communication Standards: ISA, PCI, PCI-X, Peripheral Interfacing: Timers, ADC/DAC, GPIO (Basics)	
111	ARM Microcontrollers and Architecture: ARM Architecture Overview, Block Diagrams and On-chip Peripherals: ARM 7 and ARM 9, ARM Organization and Implementation: 3 stage pipeline ARM organization, 5-stage pipeline ARM organization, ARM instruction execution, ARM implementation, The ARM coprocessor interface.	10

IV	 ARM Assembly Language Programming: Data processing instructions, Data transfer instructions, Control flow instructions, writing simple assembly language programs. The Thumb Instruction Set: The Thumb bit in the CPSR, The Thumb programmer's model, Thumb branch instructions, Thumb software interrupt instruction, Thumb data processing instructions, Thumb single register data transfer instructions, Thumb multiple register data transfer instructions. 	10
V	 Architectural Support for System Development: The ARM memory interface, The Advanced Microcontroller Bus Architecture (AMBA). Embedded System Design examples: Audio Player, Engine Control Unit, Video Accelerator, Development Tools: Keil IDE, Debugging, Flashing Tools 	10
	Total Hours	45

Continuous Assessment: End Semester Examination – 40: 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 Marks
	: : : : :

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course I	Name	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3MC		NING	MINOR	2	1	0	0	3	2023
i. PREREQU	JISITE		owledge of and linear a				the	eory, ma	chine
ii. COURSE	OVERVIEW								
Deep Learning is the recently emerged branch of machine learning, particular designed to solve a wide range of problems in Computer Vision and Natur Language Processing. In this course, the building blocks used in deep learning a introduced. Specifically, neural networks, deep neural networks, convolution neural networks and recurrent neural networks. Learning and optimization strategies such as Gradient Descent, Nesterov Accelerated Gradient Descent Adam, AdaGrad and RMSProp are also discussed in this course. This course w helps the students to attain sound knowledge of deep architectures used for solvin various Vision and NLP tasks. In future, learners can master modern techniques deep learning such as attention mechanisms, generative models and reinforceme learning.						and Natural p learning are convolutional optimization ient Descent, nis course will sed for solving techniques in			
After the com	pletion of the	course, the	e student wil	l be	ab	le to) :		
Course Outcomes		Γ	Description						Level
CO1		Illustrate the basic concepts of neural networks and their practical issues			Apply				
CO2		Outline the standard regularization and optimization techniques for deep neural network			Understand				
CO3	Implement the foundation layers of Convolutional Neural Network			nal	Apply				
CO4	Implement a networks	e model usi	nodel using recurrent neural				Apply		
CO5	Use differer practical ap		•	o lea	arn	ing	mo	dels for	Apply

vi. Syllabus

Introduction to neural networks - Multi Layer Perceptrons (MLPs), Activation functions. Risk minimization, Loss function, Training MLPs with backpropagation, Practical issues in neural network training - Problem of Overfitting, Vanishing and exploding gradient problems, Difficulties in convergence, Local and spurious Optima, Computational Challenges. Applications of neural networks

Deep learning - Deep feed forward network, Training deep models, Optimization techniques. Regularization Techniques - L1 and L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Parameter initialization.

Convolutional Neural Networks – Convolution operation, Motivation, Pooling, Convolution, Variants of convolution functions, Structured outputs, Data types, Efficient convolution algorithms. Practical use cases for CNNs.

Recurrent neural networks – Computational graphs, RNN design, encoder – decoder sequence to sequence architectures, deep recurrent networks, recursive neural networks, modern RNNs LSTM and GRU, Practical use cases for RNNs.

Recent Trends in Deep Learning Architectures - Residual Network, Skip Connection Network, Fully Connected CNN. Generative Modeling with DL. Attention networks, Transformers, and Vision transformers for Computer Vision applications

		· · · · · ·	
v (a) T	EXT B	OOKS	
1.	Good 2016	Ifellow, I., Bengio,Y., and Courville, A., Deep Learning, MIT F	Press,
2.	Interr	al Networks and Deep Learning, Aggarwal, Charu C., c Spr national Publishing AG, part of Springer Nature 2018	•
3.	Intelli	amentals of Deep Learning: Designing Next-Generation Ma igence Algorithms (1st. ed.). Nikhil Buduma and Nicholas Loca . O'Reilly Media, Inc.	
(b) F		ENCES	
1.		h Kumar, Neural Networks: A Classroom Approach, Tata McGra ation, 2004.	w-Hill
2.	Yegn	anarayana, B., Artificial Neural Networks PHI Learning Pvt. Ltd, 2	2009.
3.		ael Nielsen, Neural Networks and Deep Learning, 2018.	
vi. CO	URSE	PLAN	
Mod	ule	Contents	lours
I		Introduction to neural networks - Multi Layer Perceptrons (MLPs), Representation Power of MLPs, Activation functions - Sigmoid, Tanh, ReLU, Softmax. Risk minimization, Loss function, Training MLPs with backpropagation, Practical issues in neural network training - The Problem of Overfitting, Vanishing and exploding gradient problems, Difficulties in convergence, Local and spurious Optima,	8

	Computational Challenges. Applications of neural networks.	
11	Deep learning - Deep feed forward network, Training deep models, Optimization techniques - Gradient Descent (GD), GD with momentum, Nesterov accelerated GD, Stochastic GD, AdaGrad, RMSProp, Adam. Regularization Techniques - L1	9

Car CHICARD	
SC IN	
Constanting in	
CERTANTING	

	Total Hours	45
v	Recent Trends in Deep Learning Architectures - Residual Network, Skip Connection Network, Fully Connected CNN. Generative Modeling with DL - Variational Autoencoder, Generative Adversarial Network. Attention networks, Transformers, and Vision transformers for Computer Vision applications.	9
IV	 Recurrent neural networks – Computational graphs, RNN design, encoder – decoder sequence to sequence architectures, deep recurrent networks, recursive neural networks, modern RNNs LSTM and GRU, Practical use cases for RNNs. Case study - Natural Language Processing. 	9
III	Convolutional Neural Networks – Convolution operation, Motivation, Pooling, Convolution and Pooling as an infinitely strong prior, Variants of convolution functions, Structured outputs, Data types, Efficient convolution algorithms. Practical use cases for CNNs Case study - Building CNN model AlexNet with handwritten digit dataset MNIST.	10
	and L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout, Parameter initialization.	

Continuous Assessment: End Semester Examination – 40: 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination		60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	C	ourse Name	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3ME	VISIO	N SYSTEM	MINOR	3	0	0	0	3	2023
i. PREREQU	ISITE	Nil							

ii. COURSE OVERVIEW

This course introduces students to the field of Vision Systems, encompassing traditional image processing and modern computer vision techniques including image formation, image handling, feature extraction, geometric transformations, and machine learning methods for vision.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	
CO1	Explain fundamental principles of vision systems	Understand
CO2	Analyze image processing and transformation techniques	Apply
CO3	Explain feature detection and descriptor algorithms	Understand
CO4	Implement classification and segmentation methods	Understand
CO5	Integrate computer vision tools for real-world tasks	Apply

iv. SYLLABUS

Introduction to vision systems, imaging models, transformation, photometric concepts, Image processing filters, feature descriptors, Python tools, Homographies, camera models, AR, 3D vision, clustering, classification, Segmentation techniques, OpenCV tools and applications

v (a) T	EXT BOOKS
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, 2 nd Edition,
	Springer, 2022.
2.	Jan Erik Solem, Programming Computer Vision with Python, O'Reilly Media,
	2012.
(b) F	REFERENCES
1.	Forsyth, D. A., & Ponce, J., Computer Vision: A Modern Approach, 2 nd Edition,
	Pearson Education, 2011.
2.	E. R. Davies, Computer Vision: Principles, Algorithms, Applications and Systems,
	5 th Edition, Academic Press, 2017.

Module	Contents	Hours
I	Introduction to vision systems. Applications of computer vision. Biological versus machine vision. Geometric primitives and transformations. Photometric image formation. The digital camera – sampling, aliasing, color representation, and compression techniques. Image Processing: Point operators, Linear filtering, More neighbourhood operators	8
II	Image Processing and Image DescriptorsImage processing techniques including point operators, linearfiltering, and neighborhood operations. Frequency domainanalysis using Fourier transforms.Introduction to local image descriptors – Harris corner detector,SIFT and matching geotagged images.	9
111	 Image Mappings and Camera Models- Multiple view geometry epipolar geometry, computing with cameras and 3D structure, multiple view reconstruction and stereo images. Clustering techniques K-means clustering, hierarchical clustering, and spectral clustering. 	9
IV	Image classification and Segmentation Image content classification using K-nearest neighbours, Bayes classifier, support vector machines and optical character recognition. Image segmentation techniques including graph cuts, clustering- based segmentation, and variational methods.	9
V	Python Libraries and OpenCV ApplicationsBasic image handling and processing using Python libraries: PIL(Python Imaging Library), Matplotlib, NumPy, and SciPy.Introduction to OpenCV – the OpenCV Python interface, basicoperations, video processing, object tracking and practicalexamples.	10
	Total Hours	45

Continuous Assessment: End Semester Examination - 40: 60

TOTAL	:	100 marks
End Semester Examination	:	60 marks
Total Continuous Assessment	:	40 marks
Assessment through Tests	•	20 marks
Assignments	:	15 marks
Attendance	:	5 marks
Continuous Assessment		

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Code Course N		Category	L	т	Р	J	Credit	Year of Introduction
23ECL3MG	MEDI DEVIC ENGI		MINOR	3	0	0	0	3	2023
i. PREREQUISITE		Nil	·						
ii. COURSE OVERV	IEW								
The Medical Devices Engineering course provides students with a comprehensive understanding of the design, development, and manufacturing processes involved in creating medical devices. The objective is to equip students with the skills necessary to contribute to the development of cutting-edge medical technologies that improve patient care and meet the highest standards of safety, reliability, and efficacy.									
iii. COURSE OUTCOMES									
After the completion of the course, the student will be able to:									

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Classify medical devices and understand their lifecycle, from conception to market release.	Understand
CO2	Apply principles of engineering to explain the working of medical devices.	Apply
CO3	Select materials for medical devices based on their properties.	Understand
CO4	Explain the regulatory processes, quality management systems, and risk management practices to ensure compliance and safety in medical device development.	Understand
CO5	Discuss emerging technologies into the design and innovation of future medical devices along with the ethical issues.	Understand

iv. SYLLABUS

Classification of medical devices, device lifecycle, and the role of engineers in healthcare.

Mechanical, electrical, and software engineering fundamentals; Design for reliability, safety, and performance in medical devices.

Materials selection, biocompatibility and material testing; Standards for material safety and performance in medical devices.

FDA and ISO standards, medical device approval processes, risk management,

aliniaal t								
fees.	ials, and quality management systems, Quality Assurance, Inspect g technologies such as AI, robotics, wearables, and 3D printing.	tion and						
0	T BOOKS							
1.	1. Introduction to Biomedical Engineering, John Enderle and Joseph Bronzino, Academic Press, 2011.							
2.	Materials for Biomedical Engineering: Applications in Medical Devices and Therapy, Hatem H. S. Gad, Elsevier, 2016.							
3.	FDA Regulatory Affairs: A Guide for Prescription Drugs, Medical Devid Biologics, Douglas J. Pisano and David J. Bearer, Informa Healthcare,							
4.	Quality Assurance for the Pharmaceutical Industry, Graham Bunn Blackwell, 2008.							
(b) RE	FERENCES							
1.	Advanced Medical Device Design: A Comprehensive Guide to Prototyp	oing and						
2.	 Manufacturing, Joe McDonnell, Springer, 2015. 2. Medical Device Design: Innovation from Concept to Market, Peter J. Ogrodnik, John Wiley & Sons, 2009. 							
3.	Biomaterials for Implants and Medical Devices, Jean-Pierre Boutra Patrick K. B. Li, Elsevier, 2020.	and and						
vi. COUI	SE PLAN							
Module	Contents	Hours						
I	Introduction to Medical Devices Engineering Overview of medical devices and their classifications. The medical device lifecycle: design, development, manufacturing, and License. The role of medical device engineers in healthcare.	8						
	Engineering Principles for Medical Devices							
II	Biomedical Engineering fundamentals: biomechanics, physiology, and biomaterials. Mechanical, electrical, and software engineering principles for medical devices. Design for reliability, safety, and performance in medical devices.	9						
	and biomaterials. Mechanical, electrical, and software engineering principles for medical devices. Design for reliability, safety, and	9						

V	and future trends. Case studies of successful medical device innovations (e.g., pacemakers, artificial heart valve). Ethical issues in medical device engineering. Total Hours	10 45
	Advanced Topics in Medical Devices Emerging technologies in medical devices: AI, robotics, 3D printing. Wearable and implantable devices: design considerations	
	clinical trials in medical devices (ISO 14971). Quality Assurance, Inspection and fees.	

Continuous Assessment: End Semester Examination – 40: 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 marks
	:

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

S5 HONOURS

Course Code	Course Name		Category	L	т	Р	J	Credit	Year of Introduction
23ECL3HA	FPGA BASED SYSTEM DES		HONOURS	3	0	0	0	3	2023
i. PREREQI	JISITE	23EC.	J20C - Logic (Circ	uit	Des	ign		
ii. COURSE	OVERVIEW								
design using Verilog HDL FPGA board	This course is designed to equip students with a thorough understanding of circuit design using programmable logic, emphasizing digital system development through Verilog HDL for modeling, simulation, and practical implementation on commercial FPGA boards iii. COURSE OUTCOMES								oment through
After the con	npletion of the c	ourse, t	he student wil	l be	e ab	le to	D :		
Course Outcomes	Description					Level			
CO 1	Explain the ar and FPGA	ire and desigr	n ap	opro	back	nes	of ASIC	Understand	
CO 2	Design combi devices	nationa	l circuits using	ircuits using programmable logic				Apply	
	م مالا بام م	C \ / 11					1 12 24 1		

CO 3	Apply the concepts of Verilog HDL to model digital systems	Apply
CO 4	Apply the steps of the design flow to implement digital circuits on an FPGA board	Apply

iv. SYLLABUS

ASIC and FPGAs: Moore's Law, Types of ASICs, Generic structure of FPGA. ASIC and FPGA Design flow. FPGA-based system design: Goals, Design challenges, Design abstractions, Top-down and Bottom-Up design methodologies.

FPGA Fabrics: FPGA Architecture, coarse-grained vs. fine-grained, SRAM-based FPGAs, Permanently Programmed FPGAs, FPGA logic cells, Interconnects, I/O Pad. Programmable Logic Devices: SPLD, PLA, PAL, PROM, CPLD.

Hardware description language: Logic Design process, Modeling with Verilog HDL Tasks, and functions. Modeling of digital circuits, FSM, Memory. Test benches.

Physical Design Flow: Design translation, Mapping, Placement and Routing. Synthesis of the case statement, if statement, and arithmetic component.

Commercial FPGA Vendors: Architecture of Xilinx and Altera, Device families.

Design and implementation of a digital system using FPGA board.

v (a) T	EXT BOOKS							
1.	Wayne Wolf, FPGA-Based System Design, Pearson Education Inc., 2004							
2.	Ian Grout, Digital Systems Design with FPGAs and CPLDs, Elsevier Ltd., 2008							
3.	Samir Palnikar, Verilog HDL: A Guide to Digital Design and Synthesis, 2nd edition, Prentice Hall, 2003							
4.	Charles H. Roth, Jr., Lizy Kurian John, Byeong Kil Lee, Digital Systems Design Using Verilog, 1 st edition, Cengage Learning, 2016							
(b) F	REFERENCES							
1.	S.Trimberger, Edr., Field Programmable Gate Array Technology, Kluwer Academic Publications, 1 st edition, 1994							
2.	P.K.Chan & S. Mourad, Digital Design Using Field Programmable Gate Array, Prentice Hall (Pte), 1994							
3.	S.Brown, R.Francis, J.Rose, Z.Vransic, Field Programmable Gate Array, Kluwer Publications, 2007							

vi. COURSE PLAN

Module	Contents	Hours
I	 ASIC and FPGAs: Moore's Law, Full custom ASICs, Standard cell- based ASICs, Gate array-based ASICs. Generic structure of FPGA. ASIC and FPGA Design flow. FPGA-based system design: Goals, Design challenges, Design abstractions, Top-down and Bottom-Up design methodologies. 	8
II	FPGA Fabrics: FPGA Architecture, coarse-grained vs. fine-grained, SRAM-based FPGAs, Permanently Programmed FPGAs, FPGA logic cells, Interconnects, I/O Pad.	8
111	Programmable Logic Devices: Simple Programmable logic Device, Programmable Logic Array, Programmable Array Logic, Programmable Read Only Memory, Complex Programmable Logic Device.	10
IV	Hardware description language: Logic Design process, Modeling with Verilog HDL, Tasks and functions. Modelling of digital circuits, State machine design, RAM, ROM. Test benches.	10
v	 Physical Design flow: Design translation, Mapping, Placement and Routing. Synthesis of case statement, if statement, and arithmetic component. Commercial FPGA Vendors: Architecture of Xilinx and Altera, Device families. Design and implementation of a digital system using an FPGA board. 	9
	Total Hours	45

Continuous Assessment: End Semester Examination - 40: 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	101 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Connex venter J											
Course Code)	Course Name		Category	L	т	Ρ	J	Credit	l	Year of ntroduction
23ECL3F	łC	DETECTION ESTIMATION THEORY	AND	HONOURS	3	0	0	0	3		2025
i. PREREQUISITE			 23MAL10A - Linear Algebra and Calculus, 23MAL20C- Probability, Random Process, and Numerical Methods, 23ECL20E - Signals and Systems 								
ii. COUR	SE	OVERVIEW									
		course is to prov eory in enginee			fur	ıdar	ner	ntal	s of dete	ctio	n and
iii. COUR	RSE	OUTCOMES									
After the	con	npletion of the c	ourse, tl	he student will	be	abl	e to):			
Course Outcome	-	Description						Level			
CO 1		Describe the estimation prir	nciples u	used in various	s er	igin	eer	ing	problem	s	Understand
CO 2		Explain the es problems	imation principles used in various engineering								Understand
CO 3		Apply various applications.							-	•	Apply
CO 4		Apply differen applications.	t types	types of estimation methods in engineering							Apply
iv. SYLLABUS Fundamentals of detection and estimation theory and its applications, classical and Bayesian approach in detection and estimation theory, different types of statistical decision rules, different types of estimation algorithms and its applications.											
v (a) TEX	(T E	BOOKS									
		Kay, Fundam ory, 3/e, Pearso			Sig	nal	Pr	oce	essing, V	/ol	I: Estimation
2. S.M. Kay, Fundamentals of Statistical Signal Processing Vol II: Detection Theory, 3/e, Pearson, 2010								II: Detection			
		RENCES	,								
		. Van Trees, D y & Sons, 1968		n, Estimation,	an	d N	lod	ula	tion The	ory	, Vol. I, John
2. N	Monson H. Hayes, Statistical Digital Signal Processing and Modelling, John Wiley & Sons 2002										

B. Tech in Electronics and Communication Engineering

Wiley & Sons, 2002.

vi. COURSE PLAN							
Module	Contents	Hours					
I	Fundamentals of detection theory, the mathematical detection problem. Fundamentals of estimation theory, the mathematical estimation problem. Review of Gaussian distribution. Application examples.	9					
II	Hypothesis testing, classical approach, Neyman-Pearson theorem, likelihood ratio test, receiver operating characteristics, Bayesian approach, minimum probability of error, Bayes risk, multiple hypothesis testing.	9					
Ш	Detection of deterministic signals, matched filters, detection of random signals, estimator-correlator, linear model, application examples.	9					
IV	Minimum variance unbiased estimation, basics of Cramer- Rao Lower Bound, linear models, best linear unbiased estimation, application examples.	9					
v	Maximum likelihood estimation, least squares, Bayesian philosophy, minimum mean square error estimation, application examples.	9					
	Total Hours	45					

Continuous Assessment : End Semester Examination – 40 : 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 marks
	:

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

CONTRACT OF THE OWNER			-						
Course Code	Course N	ame	Category	L	т	Р	J	Credit	Year of Introduction
23ECL3HE	DSP SYSTE DESIGN	Μ	HONOURS	3	0	0	0	3	2023
i. PREREQ	JISITE	Nil							
ii. COURSE	OVERVIEW								
 To provide basic concepts in number representations To study about issues in pipelining and DSP Processors 									
iii. Course	OUTCOMES								
After the con	npletion of the	course, t	the student wil	ll be	e ab	le to) :		
Course Description								Level	
CO1	Explain DSP digital signal		ctures and nur	nbe	er s	yste	ems	used in	Understand
CO2	Apply Distrib RISC proces		ithmetic and (CO	RD	IC a	algo	orithm in	Apply
CO3			eline and reallelism and dyn					0	Understand
CO4	•	•	ediction techr	•				•	Understand
CO5	Describe bas	sic DSP a	architectures a	and	FP	GA	des	ign flow	Understand
iv. SYLLABUS									
Introduction to Programmable DSP, Number systems, Distributed arithmetic and CORDIC algorithm, Basic Pipelining, Basic performance issue in pipelining, Simple implementation of MIPS, Instruction Level Parallelism, Dynamic Scheduling, Dynamic Hardware Prediction, Memory hierarchy, DSP architectures, algorithms for FIR, IIR,									

and FFT, and the design and implementation of DSP systems on FPGA

v (a) TEXT BOOKS

•		
1.	Digital Signal Proce	ssing with Field Programmable Gate Arrays, Uwe Meyer-
	Baese, Springer; 3 rd	edition
2.	Sen M Kuo, Woon-	Seng S Gan, Digital Signal Processors.
(b) F	REFERENCES	
1.		ssing with Field Programmable Gate Arrays, Uwe Meyer-
	Baese, Springer; 3rd	edition
2.		ssing and Application with C6713 and C6416 DSK, Rulph
	Chassaing, Worcest	ter Polytechnic Institute, A Wiley Interscience Publication
0		

3. J L Hennessy, D A Patterson, Computer Architecture A Quantitative Approach: 3rd Edition Elsevier India.

Introduction to Programmable DSP - Block Diagram. MAC (Multiply and Accumulate), Numeric Representations and Arithmetic: Classification of number system, Conventional fixed point number system, Carry free adders, Multiplier Adder Graph, Floating point number format, Unconventional fixed point number system: Signed digit numbers, LNS and RNS. Chinese Remainder Theorem (CRT), Conversion of RNS to integer and Binary to RNS, Index Multiplier: Primitive mod root, Addition and Multiplication in index domain. Distributed Arithmetic (DA): Design, Signed DA system, CORDIC Algorithm: Rotation mode and Vectoring mode. Basic Pipelining and Simple RISC Processors: RISC Architecture,	ours
i. COURSE PLAN Contents Ho Module Contents Ho Introduction to Programmable DSP - Block Diagram. MAC (Multiply and Accumulate), Numeric Representations and Arithmetic: Classification of number system, Conventional fixed point number system, Carry free adders, Multiplier Adder Graph, Floating point number format, Unconventional fixed point number system: Signed digit numbers, LNS and RNS. Chinese Remainder Theorem (CRT), Conversion of RNS to integer and Binary to RNS, Index Multiplier: Primitive mod root, Addition and Multiplication in index domain. II Distributed Arithmetic (DA): Design, Signed DA system, CORDIC Algorithm: Rotation mode and Vectoring mode. Basic Pipelining and Simple RISC Processors: RISC Architecture, instructions and its format, Implementation of RISC instruction set, Pipelining, Pipeline Registers, Basic performance issue in	ours
Introduction to Programmable DSP - Block Diagram. MAC (Multiply and Accumulate), Numeric Representations and Arithmetic: Classification of number system, Conventional fixed point number system, Carry free adders, Multiplier Adder Graph, Floating point number format, Unconventional fixed point number system: Signed digit numbers, LNS and RNS. Chinese Remainder Theorem (CRT), Conversion of RNS to integer and Binary to RNS, Index Multiplier: Primitive mod root, Addition and Multiplication in index domain.IDistributed Arithmetic (DA): Design, Signed DA system, CORDIC Algorithm: Rotation mode and Vectoring mode. Basic Pipelining and Simple RISC Processors: RISC Architecture, instructions and its format, Implementation of RISC instruction set, Pipelining, Pipeline Registers, Basic performance issue in	ours
 (Multiply and Accumulate), Numeric Representations and Arithmetic: Classification of number system, Conventional fixed point number system, Carry free adders, Multiplier Adder Graph, Floating point number format, Unconventional fixed point number system: Signed digit numbers, LNS and RNS. Chinese Remainder Theorem (CRT), Conversion of RNS to integer and Binary to RNS, Index Multiplier: Primitive mod root, Addition and Multiplication in index domain. Distributed Arithmetic (DA): Design, Signed DA system, CORDIC Algorithm: Rotation mode and Vectoring mode. Basic Pipelining and Simple RISC Processors: RISC Architecture, instructions and its format, Implementation of RISC instruction set, Pipelining, Pipeline Registers, Basic performance issue in 	
 CORDIC Algorithm: Rotation mode and Vectoring mode. Basic Pipelining and Simple RISC Processors: RISC Architecture, instructions and its format, Implementation of RISC instruction set, Pipelining, Pipeline Registers, Basic performance issue in 	9
Pipeline Branch Penalties, Performance of pipeline with stalls.	9
III Simple implementation of MIPS, Basic pipeline for MIPS, Instruction Level Parallelism: Concepts, Dependences, RAW, WAW, and WAR hazards, Dynamic Scheduling - Reducing data hazards, Tomasulo's Algorithm.	9
 Dynamic Hardware Prediction - Reducing branch hazards. 1-bit, 2-bit, correlating branch and tournament predictor, Limitations of ILP, Branch Target Buffer, Return address predictor, Memory hierarchy - Cache design, Cache performance review, Memory mapping techniques. Block identification and replacement. 	9
 Analysis of basic DSP Architectures on programmable hard wares. Algorithms for FIR, IIR, Lattice filter structures, architectures for real and complex fast Fourier transforms, 1D/2D Convolutions, Winograd minimal filtering algorithm. FPGA: Architecture, different sub-systems, design flow for DSP system design, mapping of DSP algorithms onto FPGA. 	9
Total Hours 4	45

Continuous Assessment: End Semester Examination – 40: 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

SEMESTER VI

Cour se Code	Course Nam	ne	Category	L	т	Ρ	J	Credit		Year of Introduction
23ECL30D	CONTROL SYSTEMS		PCC	3	1	0	0	4		2023
i. PREREQUISITE 23ECL20E - Signals and Systems										
ii. COURSE OVERVIEW										
systems. T analyzed. T frequency c basic conce methods to	This course aims to develop the skills for mathematical modelling of various control systems. The time and frequency domain responses of control systems are analyzed. This course also presents the stability analysis using time domain and frequency domain approaches. Also, the course aims to get an overview of the basic concepts of controllers and compensators and make use of state space methods to determine the performance of a linear system.									
iii. COURSE										
After the cor	mpletion of the	COL	irse, the stu	ıder	nt w	vill b	e a	ble to:		
Course Outcomes			Descrip	otio	n					Level
CO1 Model electrical and mechanical systems and represent physical systems using signal flow graph, block diagram and transfer function.									Apply	
CO2 Analyze the time and frequency domain responses of control systems.								s of	Apply	
CO3 Determine the stability of a system using time and frequency domain methods.								and	Apply	
CO4	Explain the n	eed	of controlle	ers a	and	cor	npe	ensators.		Understand
CO5	Apply state-space methods for modelling, analysis Apply									Apply
iv. SYLLABUS										

Basic Components of a Control System, Open-Loop Control Systems and Closed-Loop Control Systems, Mathematical modelling of Electrical Systems and Mechanical systems, Transfer Function from Block Diagrams and Signal Flow Graphs, Time domain analysis, Steady state error and static error coefficients, Frequency domain analysis.

Stability analysis using Routh Hurwitz Criterion, Root Locus Technique and Frequency domain methods: Nyquist Plot, Bode Plot. Controllers and Compensators: PID controller, lag, lead and lag-lead compensators. State-space Analysis of Linear Systems.

v (a) ⊺		BOOKS	
1.		Golnaraghi, Benjamin C. Kuo, Automatic Control Systems,1 aw-Hill Education, 2017.	0 th ed.,
2.		agarath, M. Gopal, Control Systems Engineering, 7 th ed., New nternational Publishers, 2021.	
3.	Ogata	a K., Discrete-Time Control Systems, 2 nd ed., Pearson Education,	1995.
(b)	REFE	RENCES	
1.		an S. Nise, Control System Engineering, 7 th ed., Wiley India, 201	
2.		opal, Digital Control and State Variable Methods, 4 th ed., McG ation India, 2012.	iraw Hill
3.		a K.,Modern Control Engineering, 5 th ed., Prentice Hall of India	a, 2010.
	-	ard C Dorf and Robert H. Bishop, Modern Control Systems	
т.		son Education, 2017.	, 14 Cu,
vi. CC	OURSE	PLAN	
Mod	lule	Contents	Hours
1		 Introduction: Basic Components of a Control System, Open-Loop Control Systems and Closed-Loop Control Systems, Examples of control system, real world applications. Mathematical modelling: Electrical Systems and Mechanical systems. Force Voltage Analogy. Transfer Function from Block Diagrams and Signal Flow Graphs: Block Diagram representation and reduction methods. Signal Flow Graph reduction using Mason's gain formula. 	12
I	I	Time domain analysis:Standard Test signals, Transient and steady state responses:Time response of first and second order systems to unit step,ramp and impulse inputs, Time domain specifications. Steadystate error and static error coefficients.Introduction to software tools (MATLAB/SIMULINK) to analyzethe control system.Frequency domain analysis:Frequency domain not between time domain andfrequency domain responses.	12
II	I	 Stability: Concept of BIBO stability, absolute stability, relative stability, Routh Hurwitz Criterion, Stability analysis. Root Locus Technique: Introduction, concepts and its construction, Application to system stability studies. Illustration of the effect of addition of a zero and a pole on system response. Frequency domain methods: 	12
IN	/	Nyquist Plot: Nyquist stability criterion, Construction, Stability	

B. Tech in Electronics and Communication Engineering

V	analysis. Bode Plot: Construction, Gain Margin and Phase Margin, Stability analysis.	11
	Controllers and Compensators: P, PD, PI & PID controllers. Need of compensators, lag, lead and lag - lead compensators.	
v	State Space Analysis of Linear Systems: State variables, State equations, Matrix representation of State equations, Phase variable and canonical forms of state representation.State variable representation of electrical and mechanical systems. State Space representation from Transfer Function. Transfer function from State Space Representation, Solutions of the State equations, Eigen values & Eigen vectors, State transition matrix, Concept of Controllability and Observability and techniques to test – Kalman's Test.	13
	Total Hours	60

Simulation Assignment

The following simulations can be done in MATLAB / SIMULINK

- 1. Plot the pole-zero configuration in s-plane for the given transfer function.
- 2. Determine the transfer function for given closed loop system in block diagram representation.
- 3. Plot unit step response of given transfer function and find delay time, rise time, peak time and peak overshoot.
- 4. Determine the time response of the given system subjected to any arbitrary input.
- 5. Plot root locus of given transfer function, locate closed loop poles for different values of k.
- 6. Plot bode plot of given transfer function and determine the stability by measuring gain and phase margins.
- 7. Determine the steady state errors of a given transfer function.
- 8. Plot Nyquist plot for given transfer function and determine the relative stability.
- 9. Create the state space model of a linear continuous system.
- 10. Determine the state space representation of the given transfer function.

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- •No. of tests: 02
- •Maximum Marks: 30
- •Test Duration: 11/2 hours
- •Topics: 21/2 modules

- •Maximum Marks: 60
- •Exam Duration: 3 hours

Course Code	Course Name			Category	L	т	Ρ	J	Credit	Year of Introduction
23ECJ30E	VLSI C DESIG	IRCUIT N		PCC	3	1	2	0	5	2023
i. REREQUISITE 23ECL20B-Solid State Devices 23ECJ20C- Logic Circuit Design										
ii. COURSE	OVER	/IEW								
students to circuits with sequential e practical exp	This course aims to build a comprehensive foundation in VLSI design, enabling students to understand MOS device fundamentals, design and implement digital circuits with optimal performance, and understand the operation of memory and sequential elements under critical timing constraints. In addition, students will gain practical experience in CMOS fabrication and layout design and proficiency in using industry-standard tools to develop and evaluate CMOS-based systems.									lement digital memory and dents will gain
After the cor	npletion	of the c	ourse, the	e student wil	ll be	e ab	le to	D:		
Course Outcomes			C	Description						Level
CO1				al concepts s of CMOS (erist	ics, and	Understand
CO2 Design digital circuits and interpret the delay and timing Apply								Apply		
CO3	CO3 Describe the operation of arithmetic building blocks and Unders							Understand		
CO4		Explain the CMOS fabrication techniques and layout								Understand
CO5	Apply circuits	-	y-standar	d tools to	des	sign	C	MO	S-based	Apply

iv. SYLLABUS

Review of MOS Transistor theory, Moore's law.

Static CMOS inverter: Voltage Transfer Characteristics, Switching Threshold, Beta Ratio Effect, Noise Margins, Sources of Power Dissipation.

Logic Designing Styles: Realizing logic functions with static CMOS logic, Pass transistor logic, and transmission gate logic. Logical Effort, Electrical effort, and parasitic delay.

Dynamic CMOS logic, Cascading issue in dynamic logic, Domino logic, NP CMOS. Static and Dynamic Latches and Registers, Timing analysis- Setup and hold time, delay constraints, Clock Skew and Jitter.

Adder and Multiplier circuits, Memory architecture, Random Access Memory (RAM) N-well and Twin-Tub fabrication process. Layout and Stick Diagram.

V									
v(a) TE	EXT B	OOKS							
1.		M.Rabaey, Digital Integrated Circuits- A Design Perspective, Prent	ice Hall,						
2.		ond Edition, 2005. E. Weste and D.M. Harris, CMOS VLSI design: A Circuits and S	Svetome						
۷.	Perspective, 4 th Edition, Pearson Education India, 2011.								
3.									
		sign, McGraw-Hill, Third Ed., 2003	,						
4.		SZE, VLSI Technology, 2/e, Indian Edition, McGraw-Hill,2003							
5.		ne Wolf, Modern VLSI design, Third Edition, Pearson Education,2	002						
(b) F	REFEI	RENCES							
1.		H.E. Weste, Kamran Eshraghian, Principles of CMOS VLSI De ems Perspective, Second Edition. Pearson Publication, 2005	esign- A						
2.		avi - Design of Analog CMOS Integrated Circuits,1e, McGraw Hill Ec	lucation						
		Education, New Delhi, 2003.	acaton						
3.		n Taur & Ning, Fundamentals of Modern VLSI Devices, Ca	mbridge						
	Unive	ersity Press, 2008							
vi. CO	URSE	PLAN							
Mod	ule	Contents	Hours						
		Review of MOS Transistor theory, Moore's law.							
1		Static CMOS Inverter: Voltage Transfer Characteristics,	12						
-		Derivation of switching Threshold, Beta ratio effect, Noise							
		Margins, Sources of Power Dissipation. Realization of logic functions with static CMOS logic, Pass							
		transistor logic, and transmission gate logic.							
	Delay in logic Gates: Logical Effort Electrical effort, and parasitic								
II		delay.							
		Dynamic CMOS logic, Cascading issue in dynamic logic, Domino logic, NP CMOS.							
I		Latches and Registers: Multiplexer-based latches, Master-Slave							
		edge triggered register, Dynamic transmission gate edge							
111		triggered register.	12						
		Timing analysis- Setup and hold time, delay constraints, Clock							
		Skew and Jitter.							
		Adder and Multiplier circuits: Static adder, carry bypass adder, Array Multiplier							
IV	Memory Architecture, Random Access Memory – 6T SRAM and								
		3T and 1T DRAM cells.							
		CMOS Fabrication sequence: N-well and Twin-Tub process.							
v		Layout and Design rules: Stick Diagram, Design rules-micron	12						
		rules and Lambda rules, Layout of CMOS Inverter, two input	· · -						
		NAND and NOR gates.							

	VLSI CIRCUIT DESIGN LAB	No. of hours
1.	Familiarization with the simulation tool	3
2.	Design of CMOS Inverter	
	a. DC characteristics of CMOS inverter	3
	b. Analysis of CMOS inverter for different aspect/beta ratios	3
	c. Analysis of the chain of CMOS inverters	3
3.	Design of Combinatioal Circuits	
	a. Design of logic gates	3
	 b. Design of 2 x1 multiplexer 	3
4.	Design of Sequential Circuits	
	a. Design of D Flipflop	3
	 b. Design of Master-Slave Flip Flop 	3
5.	Layout Implementation	
	a. Layout of CMOS Inverter	3
	b. Layout of a 2-input NAND/NOR Gate.	3
	Total Hours	30

Continuous Assessment: End Semester Examination - 60: 40

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Lab Work	:	10 marks
Lab Exam	:	10 marks
Total Continuous Assessment	:	60 marks
End Semester Examination	:	40 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 40
- Exam Duration: 2 hours

Cour se Code	Course Name	Category	L	т	Ρ	J	Credit		Year of Introduction
23HSL30A	Business Economics and Accountancy	HSC	3	0	0	0	3		2023
i. PREREQUISITE									
ii. COURSE	OVERVIEW								
Economics	To familiarize the prospective engineers with elementary Principles of Business Economics and Accountancy to analyse various business structures by using Economics principles and Accounting tools at an elementary level.								
iii. COURSE	iii. COURSE OUTCOMES								
After the cor	npletion of the co	urse, the stu	ıde	nt w	vill b	e a	ble to:		
Course Outcomes		Descrip	otio	n					Level
CO1	Explain the pro		arc	ity	of	reso	ources a	and	Understand
CO2	CO2 Examine the production efficiency and profitability with the help of quantitative and qualitative methods Analyse								Analyse
CO3	Interpret the macro-economic policies, trends and issues of the economy Understand								
CO4	Analyse business viability with the help of business models and financial planning.								
CO5	Develop an accurate and compliant balance sheet by classifying and recording financial transactionsApplysystematically								

iv. SYLLABUS

Introductory Micro-Economics

Scarcity and choice - Basic economic problems- PPC – Utility – Law of diminishing marginal utility – Demand and its determinants – law of demand – elasticity of demand – measurement of elasticity and its applications – Supply, law of supply and determinants of supply – Equilibrium – Changes in demand and supply and its effects – Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.

Microeconomic Foundations: Production, Cost, Market Structures & Pricing Strategies

Production function – law of variable proportion – economies of scale – internal and external economies – Cobb-Douglas production function - Cost concepts - Short run

cost curves - long run cost curves – Revenue (concepts) – Shutdown point – Breakeven point. Perfect and imperfect competition – monopoly, regulation of monopoly, monopolistic completion (features and equilibrium of a firm) – oligopoly – Kinked demand curve – Collusive oligopolyNon-price competition – Product pricing strategies

Introductory Macro-Economics

Circular flow of income-two sector and multi-sector models- National Income Concepts-Measurement Methods-Problems-Inflation, deflation - Fiscal Policy (Government spending & taxation) - Monetary Policy (Interest rates & money supply) - Wage Rigidity & Unemployment - Demand-Pull vs. Cost-Push Inflation

Business Models and Financial Planning

Innovation and creativity in entrepreneurship - Business idea generation and feasibility analysis - Business planning (Lean Canvas, SWOT, PESTEL analysis) - Types of business structures (sole proprietorship, partnership, corporation) - Legal aspects and regulatory requirements - Sources of funding: Bootstrapping and personal savings, Venture capital and angel investors, Bank loans and government grants (Startup India, MSME financing), Crowdfunding and alternative finance - Financial planning and forecasting - Challenges in entrepreneurial finance (liquidity, risk management) -Exit strategies (IPO, mergers, acquisitions)

Introduction to Accounting

Book-Keeping and Accountancy- Elements of Double Entry- Book –Keeping-rules for journalizing-Ledger Accounts-Cash book- Banking transactions- Trial Balance-Method of Balancing accounts-the journal proper.

Final accounts: Preparation of trading and profit and loss Account- Balance sheet preparation and interpretation - Introduction to accounting packages. Modern methods in book keeping accounting.

v (a)	TEXT BOOKS									
1.	1. Gregory N Mankiw, Principles of Micro Economics, Cengage Publications 2023									
2.	Gregory N Mankiw, Principles of Macro Economics, Cengage Publications 2023									
3.	Steven Rogers, Entrepreneurial Finance, McGraw-Hill, Fourth Edition, 2020									
4.	Agrawal R and Sriniwasan R, Accounting Made Easy, Tata McGraw-Hill 2010									
(b)	REFERENCES									
1.	Dominick Salvatore, Theory and Problems of Micro Economic Theory. Tata Mac Graw- Hill, New Delhi.2017									
2.	Dwivedi D.N., Macroeconomics: Theory And Policy, Tata McGraw Hill, New Delhi 2018									
3.	Dornbusch, Fischer and Startz, Macroeconomics, McGraw Hill, 12th edition, 2018.									
4.	Janet Kiholm Smith and Richard L Smith, Entrepreneurial Finance: Venture Capital, Deal Structure & Valuation, Stanford Business Books US, 2019									
5.	M.Kasi Reddy and S.Saraswathi, Managerial Economics and Financial Accounting. Prentice Hall of India. New Delhi. 2008									

B. Tech in Electronics and Communication Engineering

vi. COURSE PLAN						
Module	Contents	Hours				
I	Scarcity and choice - Basic economic problems - PPC – Utility – Law of diminishing marginal utility – Demand and its determinants – law of demand – elasticity of demand – measurement of elasticity and its applications – Supply, law of supply and determinants of supply – Equilibrium – Changes in demand and supply and its effects – Consumer surplus and producer surplus (Concepts) – Taxation and deadweight loss.	9				
II	Production function – law of variable proportion – economies of scale – internal and external economies – Cobb-Douglas production function - Cost concepts - Short run cost curves - long run cost curves – Revenue (concepts) – Shutdown point – Break-even point. Perfect and imperfect competition – monopoly, regulation of monopoly, monopolistic completion (features and equilibrium of a firm) – oligopoly – Kinked demand curve – Collusive oligopoly - Non-price competition – Product pricing strategies	8				
ш	Circular flow of income - two sector and multi-sector models - National Income Concepts - Measurement Methods – Problems - Inflation, deflation - Fiscal Policy (Government spending & taxation) - Monetary Policy (Interest rates & money supply) - Wage Rigidity & Unemployment - Demand-Pull vs. Cost-Push Inflation	9				
IV	Innovation and creativity in entrepreneurship - Business idea generation and feasibility analysis - Business planning (Lean Canvas, SWOT, PESTEL analysis) - Types of business structures (sole proprietorship, partnership, corporation) - Legal aspects and regulatory requirements - Sources of funding: Bootstrapping and personal savings, Venture capital and angel investors, Bank loans and government grants (Startup India, MSME financing), Crowdfunding and alternative finance - Financial planning and forecasting - Challenges in entrepreneurial finance (liquidity, risk management) - Exit strategies (IPO, mergers, acquisitions)	9				
v	Book-Keeping and Accountancy - Elements of Double Entry - Book –Keeping - rules for journalizing - Ledger accounts - Cash book- Banking transactions - Trial Balance - Method of Balancing accounts - the journal proper. Final accounts: Preparation of trading and profit and loss Account - Balance sheet preparation and interpretation - Introduction to accounting packages. Modern methods in book keeping accounting.	10				
	Total Hours	45				

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- •No. of tests: 02
- •Maximum Marks: 30
- •Test Duration: 11/2 hours
- •Topics: 21/2 modules

- •Maximum Marks: 60
- •Exam Duration: 3 hours

Course Code	Course Na	ame	Categor y	L	т	Ρ	J	Credit	Year of Introduction
23ECS38A	SEMINAR		PWS	0	0	4	0	2	2023
i. PREREQUISITE Nil									
ii. COURSE	OVERVIEW								

The course involves exploring academic literature to select a relevant document in the student's area of interest and, under a seminar guide's supervision, develop skills in presenting and preparing technical reports. The course aims to enhance students ability to engage critically with scholarly work and communicate technical information effectively.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	CO1 Outline topic based on recent advancements and emergin	
	trends	
CO2	Identify academic documents from the literature which are	Apply
002	related to her/his areas of interest.	
CO3	Plan, study, and deliver a presentation on a selected topic.	Apply
CO4	Develop a technical report on the topic identified.	Apply

iv. GENERAL GUIDELINES

- An Internal Evaluation Committee (IEC) shall be constituted by the department, comprising the program's HOD/Senior Faculty as Chairperson, along with the seminar coordinator and the student's seminar guide as members. All IEC members must be present during each student's seminar presentation.
- Formation of IEC and guide allotment shall be completed within a week after the End Semester Examination (or last working day) of the previous semester.
- Guide shall provide required input to their students regarding the selection of topic/ paper.
- A topic/paper relevant to the discipline shall be selected by the student during the semester break.
- The seminar topic should be current and broad-based, rather than narrowly focused on specific research. Ideally, it should be closely related to the student's final year project area. Team members may select or be assigned seminar topics that cover different aspects of their common project theme.
- Topic/Paper shall be finalized in the first week of the semester and shall be submitted to the IEC.
- The IEC shall approve the selected topic/paper by the second week of the semester.
- Accurate references from genuine peer reviewed published material to be given in the report and to be verified.

v. EVALUATION PATTERN

Total Marks	CIE Marks
100	100

CONTINUOUS INTERNAL EVALUATION PATTERN

Seminar Guide (20 Marks)

Background Knowledge – 10 marks (based on the student's understanding on the selected topic). Relevance of Topic – 10 marks (based on the suitability and significance of the s elected paper/topic).

Seminar Coordinator (15 Marks)

Seminar Diary- 10 marks(weekly progress tracked and approved by the guide).Attendance- 5 marks.

Evaluation of Presentation by IEC (45 Marks)

Clarity of Presentation	– 10 marks.
Interaction	 – 10 marks (ability to answer questions).
Overall Participation	– 10 marks
(engagement during other	s' presentations).
Quality of the content	– 15 marks.

Marks awarded by IEC for report (20 Marks)

Course Code	Course Name		Categor y	L	т	Ρ	J	Credit	Year of Introduction
23ECJ38B	MINI PROJECT		PWS	0	0	4	0	2	2023
i. PREREQUISITE Nil									

The objective of this course is to enable students to apply the fundamental principles of Electronics and Communication Engineering for the effective development of an application or research-oriented project. It guides learners through the essential phases of the problem identification, literature review, determination of methodology and its implementation for design and development of appropriate solution.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Identify problems that are socially relevant, technically feasible and economically viable.	Apply
CO2	Make use of relevant literature to explore existing solutions and established processes.	Apply
CO3	Identify appropriate design approaches, using modern tools with a strong commitment to professional ethics.	Apply
CO4	Deduce innovative interpretation of the study outcomes, using engineering and management principles to generate novel insights or improvements.	Evaluate
CO5	Apply appropriate communication techniques to prepare presentations and reports that convey project outcomes effectively.	Apply
CO6	Develop the ability to manage tasks independently and engage collaboratively in team environments to achieve shared goals.	Apply

iv. GENERAL GUIDELINES

Student groups consisting of three to four members are required to select a topic of interest in consultation with their Project Supervisor. They should conduct a thorough literature review and identify a problem to address the gaps identified, related to the chosen topic. Clear objectives must be defined, and a suitable methodology should be developed to achieve them. The project should incorporate innovative design concepts, while considering important factors such as performance, scalability, reliability, aesthetics, ergonomics, user experience, and security.

The progress of the mini project is evaluated based on three reviews. The first review is to check the feasibility in implementation of the project. The second review is to evaluate the progress of the work. The third review is to evaluate the completed work. The review committee will be constituted by the Head of the Department, comprising of HoD or a

senior faculty member, Mini Project coordinator and project supervisor. The evaluation shall be made based on the progress/outcome of the project, reports and a viva-voce, conducted internally by the review committee. A project report is required at the end of the semester. The project has to be demonstrated for its full design specifications.

v. ASSESSMENT PATTERN

Total Marks	CIE Marks	ESE Marks
100	60	40

CONTINUOUS ASSESSMENT PATTERN

First Review and Second Review: 60 marks

Attendance	: 5 marks
Marks awarded by Project Supervisor	: 10 marks
Marks awarded by Review Committee	: 45 marks
Final Review: 40 marks	

Project Report	:	10 marks

Marks awarded by Review Committee : 30 marks

PROGRAMME ELECTIVE - II

V									
Course Code	Cour	se Name	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL32A	DIGITA PROCE	L IMAGE SSING	PEC	2	1	0	0	3	2023
i. PREREQL	JISITE:	23ECL30E	8 – Digital S	igna	al Pr	oces	ssing		
ii. COURSE	OVERVI	EW							
This course aims to develop the skills for methods of various transformations and analysis of image enhancement, image reconstruction, image compression, image segmentation and image representation.									
iii. COURSE	оитсо	MES							
After the corr	pletion c	of the course	, the student	will	be a	ble to	D:		
Course Description							Level		
CO 1		n the basic o ent levels of o	concepts of d operations.	igita	l ima	age p	roces	sing at	Understand
CO 2	Apply		s to analyze a	a 2D	disc	crete	signa	l in time	Apply
CO 3	Apply the concepts to enhance digital images using various filtering techniques.						Apply		
CO 4	Explain the concepts to restore digital images using various			Understand					
CO 5	Explai	n various im	age segment	tatio	n teo	chniq	ues.		Understand

iv. SYLLABUS

Digital Image Fundamentals: Image representation, Basic relationship between pixels, Elements of DIP system, Elements of visual perception- Simple image formation model. Vidicon and Digital Camera working principles, Brightness, Contrast, Hue, Saturation, Mach band effect. Colour image fundamentals- RGB, CMY, HIS models, 2D sampling, quantization.

Review of matrix theory: Row and column ordering- Toeplitz, Circulant and block matrix, 2D Image transforms: DFT, its properties, Walsh transform, Hadamard transform, Haar transform, DCT, KL transform and Singular Value Decomposition. Image Compression: Need for compression, Basics of lossless compression– Bit plane coding, Run length encoding and Predictive coding, Basics of lossy compression – Uniform and Non-uniform quantization techniques used in image compression, Concept of transform coding, JPEG Image compression standard.

Image Enhancement: Spatial domain methods: Point processing- Intensity transformations, Histogram processing, Image subtraction, Image averaging. Spatial filtering- Smoothing

filters, Sharpening filters. Frequency domain methods: Low pass filtering, High pass filtering, Homomorphic filter.

Image Restoration: Degradation model, Unconstraint restoration- Lagrange multiplier and Constraint restoration, Inverse filtering- Removal of blur caused by uniform linear motion, Weiner filtering, Geometric transformations-Spatial transformations.

Image segmentation: Classification of Image segmentation techniques, Region approach, Clustering techniques. Segmentation based on thresholding, Edge based segmentation. Classification of edges, Edge detection, Hough transform, Active contour.

v (a) TEXT BOOKS

1. Gonzalez Rafel C, Digital Image Processing, Pearson Education, 4th Edition, 2018.

2. S Jayaraman, S Esakkirajan, T Veerakumar, Digital image processing, Tata McGrawHill, 2nd Edition, 2020.

(b) REFERENCES

1. Jain Anil K, Fundamentals of digital image processing, 1st Edition, 2015.

2. Kenneth R Castleman, Digital image processing, Pearson Education, 2nd Edition, 2003.

3. Pratt William K, Digital Image Processing, John Wiley, 4th Edition, 2007.

vi. COURSE PLAN

Module	Contents	Hours
I	Digital image fundamentals: Image representation, Basic relationship between pixels, Elements of DIP system, Elements of visual perception, Simple image formation model. Vidicon and Digital Camera working principles, Brightness, Contrast, Hue, Saturation, Mach band effect. Colour image fundamentals: RGB, CMY, HIS models, 2D sampling, Quantization.	9
II	 Review of matrix theory: Row and column ordering- Toeplitz, Circulant and Block matrix. 2D Image transforms: DFT, its properties, Walsh transform, Hadamard transform, Haar transform, DCT, KL transform and Singular Value Decomposition. Image compression: Need for compression, Basics of lossless compression– Bit plane coding, Run length encoding and Predictive coding, Basics of lossy compression – Uniform and Non-uniform quantization techniques used in image compression, Concept of transform coding, JPEG Image compression standard. 	9
III	 Image enhancement: Spatial domain methods: Point processing- Intensity transformations, Histogram processing, Image subtraction, Image averaging. Spatial filtering: Smoothing filters, Sharpening filters. Frequency domain methods: Low pass filtering, High pass filtering, 	9

v	Homomorphic filter.	
	Image restoration: Degradation model, Unconstraint restoration-Lagrange multiplier and constraint restoration.	
IV	Inverse filtering: Removal of blur caused by uniform linear motion, Weiner filtering.	9
	Geometric transformations: Spatial transformations.	
v	Image segmentation: Classification of Image segmentation techniques, Region approach, Clustering techniques. Segmentation based on thresholding, Edge based segmentation. Classification of edges, Edge detection, Hough transform, Active contour.	9
	Total Hours	45

* Hands-on session will be included.

vii. ASSESSMENT PATTERN

Continuous Assessment : End Semester Examination - 40 : 60

Assessment inrough lesis	:	20 marks
Assessment through rests	•	20 marks
Assessment through Tests		20 marks
Assignments	:	15 marks
Attendance	:	5 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name		Category	L	т	Р	J	Credit	Year of Introduction
23ECL32B	DATA AN USING P	PEC	2	1	0	0	3	2023	
i. PREREQ	23ESB10G-	Python Pro	gra	mm	ning				
ii. COURSE	OVERVIE	w							
Goal of this course is to set the foundation for students to develop new-age skills pertaining to analysis of large-scale data using modern tools.								new-age skills	
iii. COURSE		IES							
After the cor	npletion of	the course, the	e student wil	l be	e ab	le to	D:		
Course Description								Level	
CO1 Interpret the data by reading the data from spreadsheets and databases.							dsheets	Apply	
CO2	Use pand	das library to p	rocess data	frar	nes				Apply
CO3 Compute the principal components and perform cluster analysis on data frames.							Apply		
CO4	Apply Ba	Apply Bayesian analysis on data frames.						Apply	
CO5	Apply ma	Apply machine learning in data analysis problems.						Apply	
CO6	Explain n analysis.	nethods in high	n performano	ce c	om	puti	ng	for data	Understand

iv. SYLLABUS

Numpy and Scipy Python modules, reading and processing spreadsheets and csv files with Python, data visualization with Matplotlib, three dimensional visualization using Mayavi module, reading data from sql and mongodb databases with Python, Reading and writing pandas dataframes, Reading and writing .txt, .csv, .pdf, .html and json files with pandas, Use of pivot tables.

Pickling of data frames in Python, Dimensionality reduction with PCA, Hierarchical and K-means clustering, Bayesian analysis, Use of pymc3 module to compute the posterior probability. MAP Estimation, Kernel density estimation, Supervised and unsupervised learning, scikit-learn, Deep learning with convolutional neural networks, Use of Keras and Tensorflow. Machine learning with pytorch, Reading and writing images with openCV. Case study of character recognition with MNIST dataset.High performance computing for machine learning.

v (a) T	ЕХТ ВО	oks							
1.	Fabio	Nelli,	Python	Data	Analytics:	With	Pandas,	NumPy,	and
	Matplo	tlib,2/e,	Apress,	2018					

2.		McKinney, Python for Data Analysis: Data Wrangling with F	andas,								
(h) F		Py, and IPython, 2/e, O'Reilly, 2017 RENCES									
1.	Cyril	leRossant, IPython Interactive Computing and Visualization Coc PACKT Open Source Publishing, 2018	okbook,								
2.		Francois Chollet, Deep Learning with Python, 1/e, Manning, 2017									
3.											
vi. CO	URSE	PLAN	1								
Mod	ule	Contents	Hours								
I		Python packages for data science : Numpy and Scipy Python modules for data analysis. Reading and processing spreadsheets and csv files with Python using xlrd, xlwt and openpyxl. Data visualization with Matplotlib. Two dimensional charts and plots. Scatter plots with matplotlib. Three dimensional visualization using Mayavi module. Reading data from sql and mongodb databases with Python.	8								
II		 Big Data Arrays with Pandas: Familiarization of the python pandas. Reading and writing pandas data frames. Reading rows and columns from pandas data frame. Cleaning and Preparing the Data: Handling NaN values. Reading and writing .txt, .csv, .pdf, .html and json files with pandas. Merging, concatenating and grouping of data frames. Use of pivot tables. Pickling of data frames in Python. 									
		PCA and Cluster Analysis: Singular value decomposition of a matrix/array. Eigen values and eigen vectors. Principal component analysis of a data frame. Scree plot. Dimensionality reduction with PCA. Loadings for principal components. Case study with Python. Cluster analysis. Hierarchical and K-means clustering. Interpretation of dendrograms.	9								
IV S A U M C		Statistical Data Analysis: Hypothesis testing. Bayesian analysis. Meaning of prior, posterior and likelihood functions. Use of pymc3 module to compute the posterior probability. MAP Estimation. Credible interval, conjugate distributions. Contingency table and chi square test. Kernel density estimation.									
V		Machine Learning: Supervised and unsupervised learning. Use of scikit-learn. Regression using scikit-learn. Deep learning with convolutional neural networks. Structure of CNN. Use of Keras Tensorflow. Machine learning with pytorch. Reading and writing images with openCV. Case study of character recognition with MNIST dataset. High performance computing for machine learning. Use of numba,	10								

jit and numexpr for faster Python code. Use of Ipython- parallel.	
Total Hours	45

The following Simulation Assignments can be given:

- 1. Download the iris data set and read into a pandas data frame. Extract the header and replace with a new header. Extract columns and rows. Extract pivot tables. Filter the data based on the labels. Store a pivot table as a pickle and retrieve it.
- 2. For the same data set, perform principal component analysis. Observe the scree plot. Identify the principal components. Obtain a low dimensional data, with only the principal components and compute the mean square error between the original data and the approximated one. Compute the loadings for the principal components.
- 3. For the same data, perform hierarchical and K-means clustering with Python codes. Obtain dendrograms in each case and appreciate the clusters.
- 4. Download the MNIST letter data set. Construct a CNN network with appropriate layers using Keras and Tensorflow. Train the CNN with the MNIST data set. Appreciate the selection and use of training, test and cross-validation data sets. Save the model and weights and use the model to identify letter images. You may use openCV for reading images.
- 5. Write a Python script to generate alphanumeric images (26 upper case, 26 lowercase and 10 numbers each 12 point in size) of say 16x16 dimension out of windows .ttf files. Create 62 folders each containing a data set of every alphanumeric character. Create a new CNN with Keras and Tensorflow. Create a cross validation data set by taking 10 images out of every 62 folder. Use 80% of the total data for training and 20% for testing the CNN. Use an HPCC like system to train the model and save the model and weight. Test this model to recognize letter images. You may use openCV for reading images.
- 6. Repeat assignment 4 using pytorch instead of Keras.
- 7. Repeat assignment 5 using pytorch instead of Keras.

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment		40 marks
End Semester Examination		60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name			Category	L	т	Ρ	J	Credit	Year of Introduction	
23ECL32C	EMBE	DDED	PEC	3	0	0	0	3	2023		
i. PREREQUISITE 23ECJ20C- Logic Circuit Desig 23ECJ20F- Microcontroller bas					C C C C C C C C C C C C C C C C C C C						
ii. COURSE	OVERVI	EW									
communicati	This course is designed to introduce embedded systems, various protocols used for communication between peripheral devices and processors, the ARM processor organization and programming.										
iii. COURSE		MES									
After the con	npletion o	of the	course, the s	student will b	e a	ble	to:				
Course Outcomes			D	escription						Level	
CO1	Explain the basic concepts of embedded systems and different phases in the embedded system design l process/EDLC.										
CO2	Summarize the operation and characteristics of serial and parallel communication standards and devices							erial and	Understand		
CO3	Apply the ARM Thumb instruction set to develop embedded							Apply			
CO4		Apply Embedded C to interface with GPIO, UART, ADC, and handle interrupts in ARM microcontrollers.							Apply		
CO5			l system desi and sensor i	•		•				Understand	
iv. SYLLAB	US										

Introduction to Embedded Systems, The Embedded System Design Process Embedded product development cycle (EDLC).

Embedded System Interfacing and peripherals - Serial Communication Standards and Devices- Serial Bus Protocols - Parallel communication standards.

ARM Thumb Instruction Set - CPSR Thumb bit, programmer's model, Branching, interrupts, data processing, Single & multiple register data transfer. Embedded C Programming in ARM-

Register-level programming, GPIO, UART, ADC interfacing, Interrupt handling in C. ARM System Design & Real-Time Applications- Power management & optimization, Real-time systems: constraints, task handling, Tools, debugging, sensor & actuator

5						
tion.						
v (a) TEXT BOOKS						
K.V. Shibu, Introduction to Embedded Systems, 2/e, McGraw Hill Education India, 2016.						
Wayne Wolf, Computers as Components: Principles of Embedded Computing System Design, Morgan Kaufman Publishers - Elsevier 3ed, 2008						
		Second				
-		n, TMH,				
REFER	RENCES					
		ia, First				
Steve	e Heath, Embedded Systems Design, Newnes – Elsevier 2ed, 2002	•				
Frank Vahid and Tony Givargis, Embedded Systems Design – A Unified Hardware / Software Introduction, John Wiley, 2002.						
Tammy Noergaard, Embedded Systems Architecture, A Comprehensive Guide for Engineers and Programmers, Newnes – Elsevier 2ed, 2013.						
. Iyer - Embedded Real time Systems, 1/e, McGraw Hill Education New Delhi, 2003						
 SarmadNaimi, Muhammad Ali Mazidi, SepehrNaimi, The STM32F103 Arm Microcontroller and Embedded Systems: Using Assembly and C, MicroDigitalEd 2020 						
-		amming				
URSE	PLAN					
Module Contents		Hours				
	Introduction to embedded systems - Current trends and challenges - Applications of embedded systems, Characteristics and quality attributes of an embedded system The Embedded System Design Process -Requirements, Specification, Architecture Design, Designing Hardware and Software Components, System Integration, An embedded system	8				
	tion. EXT B K.V. India, Wayr Syste Editio Raj k 2003 REFER Davic India Steve Calination Steve Steve Calination Steve	titon. EXT BOOKS K.V. Shibu, Introduction to Embedded Systems, 2/e, McGraw Hill Ec India, 2016. Wayne Wolf, Computers as Components: Principles of Embedded Co System Design, Morgan Kaufman Publishers - Elsevier 3ed, 2008 Steve Furber, ARM system-on-chip architecture, Addison Wesley, Edition, 2000. Raj Kamal, Embedded Systems Architecture, Programming and Desigr 2003. EFERENCES David E. Simon, An Embedded Software Primer, Pearson Education As Indian Reprint 2000. Steve Heath, Embedded Systems Design, Newnes – Elsevier 2ed, 2002 Andrew N. Sloss, Dominic Symes, Chris Wright, ARM System Developer' Designing Optimizing System Software, Morgan Kaufmann Publishers 20 Frank Vahid and Tony Givargis, Embedded Systems Design – A Hardware / Software Introduction, John Wiley, 2002. Tammy Noergaard, Embedded Systems, Architecture, A Comprehensive for Engineers and Programmers, Newnes – Elsevier 2ed, 2013. Iyer - Embedded Real time Systems: An Integrated Approach, 1/e, 2012. SarmadNaimi, Muhammad Ali Mazidi, SepehrNaimi, The STM32F10 Microcontroller and Embedded Systems. Using Assembly a MicroDigitalEd., 2020 Shujen Chen, Muhammad Ali Mazidi, EshraghGhaemi,STM32 Arm Prografor Embedded Systems, 2018 URSE PLAN ule Contents Introduction to Embedded Systems Introduction to embedded systems Current trends and challenges - Applications of embedded systems, Characteristics and quality attributes of an embedded system, Scharacteristics and quality attributes of an embedded system Scharacteristics and quality attributes of an embedded system Scharacteristics and quality attributes of an embedded system Characteristics and quality attributes of an embedded system The Embedded System Design Process -Requirements, Specification, Architecture Design, Designing Hardware and Software Components, System Integration, An embedded system design example.				

V	phases of EDLC, EDLC models	
	Embedded system interfacing and peripherals	7
II	Communication devices: Serial Communication Standards and	
	Devices - UART, HDLC and SPI	
	Serial Bus Protocols -I2C Bus, CAN Bus and USB Bus. Parallel communication standards -ISA, PCI and PCI-X Bus.	
	ARM Thumb Instruction Set	
	The Thumb bit in the CPSR, The Thumb programmer's model,	10
III	Thumb branch instructions, Thumb software interrupt instruction, Thumb data processing instructions, Thumb single register data	10
	transfer instructions, Thumb multiple register data transfer	
	instructions.	
	Embedded C programming in ARM : Introduction, Register level	10
IV	programming , GPIO and peripheral interfacing : Programming	10
	GPIO, UART, ADC. Interrupt handling in C.	
	ARM System Design and Real-time Application Development	
	Power Management & Optimization: Power-saving techniques (DVFS, low-power modes), Performance trade-offs and	
	optimization, Real-time Systems with ARM: Real-time	
V	requirements and constraints, Implementing real-time tasks and	10
	interrupt handling, Development Tools & Debugging, Embedded	10
	Application Development: integrating sensors, actuators, and real-	
	world interfaces	
	Total Hours	45

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1¹/₂ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

	Course Code	Cour	Course Name		L	т	Р	J	Credit	Year of Introduction
	23ECL32D	INTRODU MEMS	INTRODUCTION TO MEMS		3	0	0	0	3	2023
i										

ii. COURSE OVERVIEW

The course aims to develop students' understanding of MEMS device principles while exploring key mechanical concepts and structural aspects that impact their operation. It further introduces students to scaling effects, material selection, fabrication processes, packaging strategies, and diverse application domains within MEMS technology.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Describe the operating principles of microsensors and actuators used in MEMS.	Understand
CO2	Explain the fundamental mechanical concepts and structural elements relevant to MEMS devices.	Understand
CO3	Interpret scaling laws to describe their impact in miniaturized systems.	Understand
CO4	Identify commonly used MEMS materials and summarize key micromanufacturing processes.	Understand
CO5	Explain packaging techniques, bonding methods, and emerging application domains in MEMS.	Understand

iv. SYLLABUS

Actuation and Sensing techniques – Thermal, Electrostatic, Piezoelectric, Magnetic. Micro sensors and micro actuators. Stress, Strain, Modulus of Elasticity, yield strength, ultimate strength, General stress-strain relations, compliance matrix.

Types of Beams, longitudinal strain under pure bending, Cantilevers, Springconstant, Intrinsic stresses. Scaling laws in miniaturization. Material for MEMS. Bulk manufacturing, Surface micromachining, LIGA, Microstereo lithography. Microsystem packaging. Bonding techniques. Overview of MEMS areas

v (a) TEXT BOOKS

. (,								
1.	Chang Liu, Foundations of MEMS, Pearson, 2012							
2.	Tai-Ran Hsu, MEMS and Microsystems Design and Manufacture, TMH, 2002							
(b) F	(b) REFERENCES							
1.	Chang C Y and Sze S. M., VLSI Technology, McGraw-Hill, New York, 2000							
2.	······································							
	& Sons, 1994							

Contrast Trans	1						
3.	 Mark Madou, Fundamentals of Micro fabrication, CRC Press, Nev 1997 						
4.	Stephen D. Senturia, Microsystem design, Springer (India), 2006.						
5.	5. Thomas B. Jones, Electromechanics and MEMS, Cambridge Univer Press, 2001						
6.	Greg Hill,	jory T.A. Kovacs, Micromachined Transducers Sourcebook, N 1998	/IcGraw				
vi. CO	URSE	PLAN					
Mod	ule	Contents	Hours				
1		 Actuation and Sensing techniques: Thermal sensors and actuators, Electrostatic sensors and actuators, Piezoelectric sensors and actuators, magnetic actuators. Micro sensors and micro actuators: comb drives - Micro grippers – micro motors, micro valves, micro pumps, micro accelerometer 	9				
11		 Review of Mechanical concepts: Stress, Strain, Modulus of Elasticity, yield strength, ultimate strength – General stress strain relations – compliance matrix. Mechanical structures in MEMS: Beams, Types of Beams, longitudinal strain under pure bending, Cantilevers, Spring constant of cantilever, Intrinsic stresses. 					
111	l	Scaling laws in miniaturization: Scaling in geometry, scaling in rigid body dynamics, Trimmer force scaling vector, scaling in electrostatic and electromagnetic forces, scaling in electricity and fluidic dynamics, scaling in heat conducting and heat convection.	9				
IV	1	 Materials for MEMS: Silicon – Silicon compounds – Silicon Nitride, Silicon Dioxide, Silicon carbide, Poly Silicon, GaAs, Silicon Piezo resistors. Polymers in MEMS. Overview of Micro manufacturing: Bulk micro manufacturing, Surface micro machining, LIGA process, Microstereo lithography 	9				
v		Micro system Packaging: General considerations in packaging design, Levels of Micro system packaging. Bonding techniques for MEMS: Surface bonding, Anodic bonding, Silicon-on-Insulator, Wire bonding, Sealing techniques. Overview of MEMS areas: RF MEMS, BioMEMS, MOEMS, NEMS	9				
		Total Hours	45				

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
End Semester Examination TOTAL	:	60 marks 100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1½ hours
- Topics: 2¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

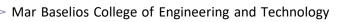
Course Code	Course Name		Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL32E	SATELLITE COMMUNIC		PEC	3	0	0	0	3	2023
i. PREREQ	UISITE	23ECL304	A-Analog and	d Di	gita	l co	mm	nunicatio	n
ii. COURSE	OVERVIEW								
This course applications	•	art the basi	c knowledge	e o	f sa	itelli	ite	commun	ication and its
iii. COURSE		6							
After the cor	mpletion of the	e course, the	e student wil	ll be	e ab	le to	o:		
Course Outcomes		[Description						Level
CO1		Explain the basic concepts of satellite communication and satellite orbits.						Understand	
CO2 Describe satellite communication subsystems& launching mechanisms of satellites.						Understand			
CO3	Calculate sa	itellite link b	udget.						Apply
CO4	Explain the fundamental principles of multiple access, spectrum sharing, and onboard processing techniques in satellite communication systems								
CO5	Describe va	rious applic	ations of sat	ellit	e co	omr	nun	ications.	Understand

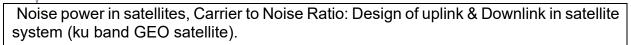
iv. SYLLABUS

Satellite Orbits:

Introduction to Satellite Communication, Basic concepts of Satellite Communications, Kepler's laws of planetary motion, orbital mechanics: orbital elements, orbital equations. Types of satellite orbits. Orbital perturbations, orbital effects on satellite's performance, Eclipses. Look angles: Azimuth angle, Elevation angle.

Satellite System:


The Space Segment: Altitude and orbit control Subsystem: satellite stabilization & station keeping, TT&C Sub-System, Power & Antenna Subsystems, transponders, payload.


The Earth Segment: Transmit-Receive earth station architecture, design considerations, types of earth station, satellite tracking. Satellite launch systems.

Satellite System:

The Satellite Link design:

Transmission Theory, Link budget: basic terminologies, link power budget analysis, factors affecting link budget.

Design for Specified CNR: Combining CNR and C/I Values in Satellite Links.

Multiple Access techniques & Satellite on-board processing

Multiple Access techniques: Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) Spread Spectrum Transmission and Reception, Demand Assignment Multiple Access (DAMA

Packet radio systems & random-access protocols. Spectrum sharing, Satellite onboard processing.

Satellite Application:

Communication Satellites: Introduction, Satellite Telephony, Satellite Television, Satellite radio, regional & national Satellite Systems.

Remote Sensing & Weather forecasting satellites: Classification of remote sensing systems, orbits, Payloads, Navigation Satellite: Basic principles of satellite navigation, GPS Position Location Principle, functional segments of GPS.

Nano satellites

v (a) T	EXT B	OOKS	
1.		is Roddy, Satellite Communications, 4th Edition, McGraw- nternational edition, 2006.	
2.		thy Pratt, Jeremy E.Allnutt, Satellite Communications, Wiley, dition, October 2019.	
(b) l	REFEF	RENCES	
1.	Com	rd Maral, Michel Bousquet, Zhili Sun, Satellite munications Systems: Systems, Techniques and Technology, /,6 th edition, April 2020	
2.	Anil k 2015	K. Maini, Varsha Agrawal, Satellite Communications, Wiley India P	vt. Ltd.,
3.	TRI 1	T. HA, Digital Satellite Communications, McGraw-Hill, second edition	C
vi. CO	URSE	PLAN	
Mod	ule	Contents	Hours
I		Introduction to Satellite Communication, Basic concepts of Satellite Communications, Kepler's laws of planetary motion, orbital mechanics: orbital elements, orbital equations. Types of satellite orbits. Orbital perturbations, orbital effects on satellite's performance, Eclipses. Look angles: Azimuth angle, Elevation angle. Limit of visibility.	9
II		The Space Segment: Altitude and orbit control Subsystem: satellite stabilization & station keeping, TT&C Sub-System, Power & Antenna Subsystems, transponders, payload.	8

III	 The Earth Segment: Transmit-Receive earth station architecture, design considerations, types of earth station, satellite tracking. Satellite launch systems. Transmission Theory, Link budget: basic terminologies, link power budget analysis, factors affecting link budget. Noise power in satellites, Carrier to Noise Ratio: Design of uplink & Downlink in satellite system (ku band GEO satellite). Design for Specified CNR: Combining CNR and C/I Values in Satellite Links. Multiple Access techniques: Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) Spread Spectrum Transmission and Reception, Demand Assignment Multiple Access (DAMA) Packet radio systems & random-access protocols. Spectrum sharing: regulatory frame work& spectrum management, interference management & mitigation techniques. 	9
	Fundamentals of Satellite onboard processing: Introduction, onboard data handling systems, data compression & reduction techniques, onboard image processing, data storage and management.	
V	Communication Satellites: Introduction, Satellite Telephony, Satellite Television, Satellite radio, regional & national Satellite Systems. Remote Sensing & Weather forecasting satellites: Classification of remote sensing systems, orbits, Payloads. Navigation Satellite: Basic principles of satellite navigation, GPS Position Location Principle, functional segments of GPS. Nano satellites	9
	Total Hours	45

Continuous Assessment: End Semester Examination - 40: 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

V										-
Course Code	Οοι	ırse Na	ime	Category	L	т	Р	J	Credit	Year of Introduction
23ECL32F	ANTENI WAVE PROPA			PEC	2	1	0	0	3	2023
i. PREREQ	UISITE	23EC	L30C- Ele	ectromagne	tic F	Field	d Th	eor	У	
ii. COURSE	OVERVI	EW								
This source	oimo to	import	knowlad	an on the k				ina	of opto	anaa ta atudu

This course aims to impart knowledge on the basic working of antennas, to study various antennas, arrays and radiation patterns of antennas, to understand various techniques involved in various antenna parameter measurements, to understand the propagation of radio waves in the atmosphere.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Explain the basic working of antennas.	Understand
CO2	Illustrate radiation pattern of the antenna.	Apply
CO3	Analyze different types of antenna arrays and its property.	Apply
CO4	Explain the operation of different types of antennas.	Understand
CO5	Explain propagation of radio waves in the atmosphere.	Understand

iv. SYLLABUS

Antenna and antenna parameters, Duality of antennas, Derivation of electromagnetic fields and directivity of short dipole and half wave dipole, Measurement of antenna parameters.

Antenna arrays and design of Endfire, broadside, binomial and Dolph-chebyshev arrays, Principles of practical antennas. Traveling wave antennas, principle and applications of V and rhombic antennas Principles of Horn, Parabolic dish antenna and Cassegrain antenna, Log periodic antenna array and Helical antenna.

Design of rectangular Patch antennas. Principle of smart antenna, Radio wave propagation, Different modes, effect of earth's magnetic field. Fading and diversity techniques.

v BOOK	(a) TEXT S
1.	Balanis, Antenna Theory and Design, 3/e, Wiley Publications.
2.	John D. Krauss, Antennas for all Applications, 3/e, TMH.
(b) l	REFERENCES

B. Tech in Electronics and Communication Engineering

1.	Callin	n R.E, Antennas & Radio Wave Propagation, McGraw Hill. 198	5			
2.		an E.C. & K. G. Balmain, Electromagnetic Waves & Radiating Sy	stems,			
	2/e,F					
3.	Raju	G.S.N., Antenna and Wave Propagation, Pearson, 2013.				
4.	Thor scier	nas A. Milligan, Modern Antenna Design, IEEE PRESS, 2/e, Wil	ey Inter			
VI. CO	URSE					
Mod	ule	Contents	Hours			
I		Basic antenna parameters - gain, directivity, beam solid angle, beam width and effective aperture calculations. Effective height wave polarization - antenna temperature - radiation resistance- radiation efficiency - antenna field zones - principles of reciprocity. Duality of antennas.	9			
II		Concept of retarded potential, Radiation from an infinitesimal dipole, total power radiated and its radiation resistance. Field, directivity and radiation resistance of a short dipole and half wave dipole. Mobile phone antenna- base station, hand set antenna, Principle of smart antenna.	10			
111		Arrays of point sources - field of two isotropic point sources - principle of pattern multiplication - linear arrays of 'n' isotropic point sources. Grating lobes. Design of Broadside, Endfire & Binomial arrays. Design of Dolph-Chebyshev arrays.	9			
IV	,	Basic principle of beam steering. Travelling wave antennas. Principle and applications of V and rhombic antennas. Principle of Log periodic antenna array and Helical antenna. Parabolic dish antenna. Principles of Horn, Cassegrain antenna, Design of rectangular Patch antennas. (Expression for E, H and Gain without derivation).	9			
v	 Radio wave propagation, Modes, structure of atmosphere, sky wave propagation, effect of earth's magnetic field, space wave propagation, LOS distance. Field strength of space wave, duct propagation, VHF and UHF, Mobile radio propagation, tropospheric scatter propagation, 					
		Total Hours	45			

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests:02
- Maximum Marks:30
- Test Duration:1½ hours
- Topics:2½ modules

- Maximum Marks:60
- Exam Duration:3 hours

Apply

<u> </u>										
Course Code	Co	ourse	Name	Category	L	т	Р	J	Credit	Year of Introduction
23ECL32G	MULTI		TE	PEC	2	1	0	0	3	2023
i. PREREQI	EREQUISITE 23ECL20B-Signals and Systems 23ECL30B-Digital Signal Processing									
ii. OVERVIEW	COUF	RSE								
covering e decomposition aspects, incl processing,	s course provides an in-depth understanding of multi-rate signal processing, vering essential concepts such as decimation, interpolation, polyphase composition, and filter banks. Students will explore both theoretical and practical bects, including applications in modern communication systems, digital audio/video bcessing, and advanced signal processing techniques used in 5G, software-defined lio (SDR), and cognitive radio networks (CRNs).									
iii. COURSE		OME	s							
After the cor	npletion	of th	e course, the	e student wil	l be	e ab	le to	o:		
Course Outcomes			Γ	Description						Level
CO1	Explai proces		fundamenta	al principles	of n	nult	i rat	e s	ignal	Understand
CO2	Desig syster		d analyse de	cimation an	d in	iterp	oola	tior	1	Apply
CO3	Impler structi		efficient multistage and polyphase filter Apply							
CO4	proces	ssing		Ū.		•				Apply
CO5	Apply	multi	-rate technic	lues in mode	ern	eng	jine	erin	g	Apply

iv. SYLLABUS

Basics of up-sampling and down-sampling and their real-world applications.

applications such as 5G, SDR, and cognitive radio.

Designing efficient decimators and interpolators with filters to prevent signal distortion.

Filter banks and wavelets for breaking signals into multiple frequency bands, used in image/audio processing

Multistage processing for efficiency and adaptive filter banks that adjust based on input signals.

Applications in 5G, software-defined radio (SDR), cognitive radio networks (CRN), and signal compression (MP3, JPEG, etc.).

v (a) TEXT BOOKS

B. Tech in Electronics and Communication Engineering

1.		 Vaidyanathan, Multirate Systems and Filter Banks, P ation,First Edition, 1993. 	earson	
2.	Fred	ic J. Harris, Multirate Signal Processing for Communication Sy	vstems,	
3.		son Education, First Edition, 2004. G. Proakis & Dimitris K. Manolakis, Digital Signal Proc	essina:	
0.		iples, Algorithms, and Applications, Pearson Education,	•	
	Editic	on, 2006.		
4.		V. Oppenheim & Ronald W. Schafer, Discrete-Time Signal Proc hird Edition, 2016	cessing	
	-			
		RENCES		
1.		Fliege, Multirate Digital Signal Processing: Multirate Systems	s, Filter	
2.		s, Wavelets, Wiley, First Edition, 1999. Meyer-Baese, Digital Signal Processing with Field Program	nmable	
		Arrays, Springer, FourthEdition, 2021.		
3.		Id E. Crochiere & Lawrence R. Rabiner, Multirate Digital essing, Pearson Education, First Edition, 1983	ital Signal	
vi. CO	URSE	PLAN		
Mod	ule	Contents	Hours	
		Introduction to Multi-rate Systems		
		Basics of discrete-time signals and systems, need for multi-	8	
I		rate signal processing, upsampling and downsampling- spectral effects, sampling rate conversion, mathematical		
		foundations of multi-rate systems, polyphase decomposition,		
		applications in audio, video, and communication systems.		
		Signal Impairments in Multi-rate Systems		
		Aliasing and its spectral effects, Magnitude distortion and		
		passband ripple, Phase distortion and group delay, Trade-offs		
П		in filter bank design, Aliasing cancellation, All pass filters, Applications- DFT-based Filter banks, Interpolated FIR filter	9	
		design, Cascaded-Integrator-Comb (CIC) filters,		
		Transmultiplexer, Filter bank interpretation of Spectral analysis		
		using DFT		
		Filter Banks and Wavelets		
		Two-channel filter banks, quadrature mirror filters (QMF), perfect reconstruction filter banks, conditions for alias-free	9	
		reconstruction, introduction to wavelet transforms,	9	
		multiresolution analysis, applications in signal compression.		
		Multistage and Adaptive Multi-rate Systems, Multistage		
		decimation and interpolation, computational efficiency in		
IV	'	multistage processing, design of multistage filters, adaptive filter	9	
		banks, applications in speech and audio processing, efficiency		
		improvements in multi-rate implementations.		

V	compression, software-defined radio (SDR), cognitive radio networks (CRN), biomedical signal processing applications, real-world case studies and project implementations. Total Hours	10 45
	Applications of Multi-rate Systems, Multi-rate techniques in 5G and beyond, sub-band coding for audio and image	

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests:02
- Maximum Marks:30
- Test Duration:1½ hours
- Topics:2½ modules

- Maximum Marks:60
- Exam Duration:3 hours

S6 MINOR

Course Code	Course Name		Category	L	т	Ρ	J	Credit	Year of Introduction	
23ECL3MB	DESI	GN F	OR IoT	MINOR	3	0	0	0	3	2023
i. PREREQUISIT	E	NIL								
ii. COURSE OVE	RVIEV	V								
This course pro covering key con computing, sense	ncepts,	tech	nologies, and	d application	ns,	inc	ludi	ng	data acc	• • •
iii. COURSE OU	тсом	ES								
After the complet	ion of t	he co	ourse, the stud	dent will be a	able	e to:				
Course Outcomes	Description				Level					
CO1	-		e IoT conceptu chnologies be		rk, a	arcł	niteo	ctur	al views,	Understand
CO2 Explain the importance of design standardization in Underst			Understand							
CO3	CO3 Explain the process of organizing data and the role of Unde business processes and integration in IoT			Understand						
CO4 Explain the concept of participatory sensing, RFID, and wireless sensor networks (WSN) in IoT applications. Under			Understand							
CO5	Apply prototyping techniques to design embedded device					Apply				

iv. SYLLABUS

Internet of Things: An Overview, Internet of Things, IoT Conceptual Framework, IoT Architectural View, Technology Behind IoT, M2M Communication, Examples Design Principles for Connected Devices: Introduction, IoT/M2M Systems Layers and Design Standardization, Communication Technologies

Design Principles for Web Connectivity: Introduction, Web Communication Protocols for Connected Devices, Message Communication Protocols for Connected Devices, Web Connectivity for Connected Devices Network Using Gateway, SOAP, REST, HTTP, RESTful, and WebSocket

Data Acquiring, Organizing, Processing, and Analytics: Data Acquisition and Storage, Organizing the Data, Transactions, Business Processes, Integration and Enterprise Systems, Analytics, Knowledge Acquisition, Managing and Storing Processes

Data Collection, Storage, and Computing Using Cloud Platform: Cloud Computing Paradigm for Data Collection, Storage, and Computing, Cloud Service Models, IoT Cloud-Based Services Using Xively, Nimbits and others.

Sensors, participatory sensing, RFID and WSN: Sensor technologies, Participatory sensing, Industrial IoT and Automotive IoT, Actuators, Sensor data communication Protocol, RFID, WSN Prototyping the Embedded Devices for IoT: Embedded Computing Basics, Embedded Platform for Prototyping

Prototyping and Designing the Software for IoT Applications: Prototyping Embedded Device Software, Device, Gateways, Internet and Web/Cloud Services Software Development

v (a) TEX		S						
1.	Raj Ka	nal, INTERNET	OF THINGS Architect	ure and Design Pri	nciples, N	lcGraw		
	Hill Ed	cation (India) Pເ	Iblications 2017.					
2.	Arshde	ep Bahga, Vijay	/ Madisetti, Internet (of Things: A Hand	ls-on App	oroach,		
	Univer	ities Press, 2014	1.					
3.	Hakima	Chaouchi, The	Internet of Things (Co	onnecting objects to	the web)	Wiley		
		Publications, 2010						
4.	Pethuru Raj, Anupama C. Raman, The Internet of Things: Enabling Technologies,							
	Platfor	ns, and Use Cas	es, CRC Press, 2017.					
(b) RE	FEREN	ES						
1.	The Int	ernet of Things (I	MIT Press) by Samue	I Greengard.				
2.	Sriniva	a K. G., Internet	of Things, CENGAGE	E Learning, 2020.				
3.	Honbo	Zhou, The Intern	et of Things in the Clo	ud: A Middleware P	erspective	e, CRC		
	Press,	2012.						
vi. COUF	RSE PLA	N						
Modu	ule		Contents			Hours		
I		Conceptual Fra Behind IoT, M2I Design Princi	nings: An Overview, amework, IoT Archite M Communication, Ex ples for Connecte rems Layers and Technologies	ectural View, Tec amples of loT. d Devices: Intro	hnology duction,	9		
		Communication Communication Connectivity for	Dies for Web Conne Protocols for Conr Protocols for Co Connected Devices ITTP, RESTful, and W	nected Devices, N prinected Devices Network Using G	lessage , Web	9		
IIIData Acquiring, Organizing, Processing, and Analytics: Data Acquisition and Storage, Organizing the Data,B. Tech in Electronics and Communication Engineering						9		

B. Tech in Electronics and Communication Engineering

	Total Hours	45
	Internet and Web/Cloud Services Software Development	
	Prototyping Embedded Device Software, Device, Gateways,	
V	Prototyping and Designing the Software for IoT Applications:	9
	Computing Basics, Embedded Platform for Prototyping	
	Prototyping the Embedded Devices for IoT: Embedded	
	IoT, Actuators, Sensor data communication Protocol, RFID, WSN	
IV	technologies, Participatory sensing, Industrial IoT and Automotive	9
	Sensors, participatory sensing, RFID and WSN: Sensor	
	Using Xively, Nimbits and others.	
	Computing, Cloud Service Models, IoT Cloud-Based Services	
	Cloud Computing Paradigm for Data Collection, Storage, and	
	Platform:	
	Data Collection, Storage, and Computing Using Cloud	
	Storing Processes	
	Systems, Analytics, Knowledge Acquisition, Managing and	
	Transactions, Business Processes, Integration and Enterprise	

Continuous Assessment: End Semester Examination – 40: 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	•	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3MD	COMPUTATIONAL TOOLS FOR AI	MINOR	2	1	0	0	3	2023

i. **PREREQUISITE** Basic programming (Python, MATLAB), Mathematics (Linear Algebra, Probability, Statistics)

ii. COURSE OVERVIEW

This course aims to introduce computational tools used in AI and Machine Learning (ML); provide the basics of AI frameworks, libraries, and cloud-based AI tools; implement AI models using optimized tools; and analyze and optimize AI models using computational techniques.

iii. COURSE OUTCOMES

After the completion of the course, the student will be able to:

Course Outcomes	Description	Level
CO1	Design machine learning and deep learning algorithms using Python.	Apply
CO2	Design machine learning and deep learning algorithms using MATLAB.	Apply
CO3	Design machine learning and deep learning algorithms using cloud based tools.	Apply
CO4	Illustrate the usage of various libraries in Python, MATLAB and cloud based tools for AI applications.	Understand

vi. Syllabus

Familiarization of Python libraries and programming platform requirements used for developing an AI system.

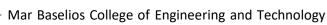
Familiarization of MATLAB toolboxes and programming platform requirements used for developing an AI system.

Familiarization of cloud based tools and programming platform requirements for AI applications.

Requirement of hardware acceleration tools, optimization techniques, and Al Model Deployment and Monitoring

v (a) Tl	EXT BOOKS
	Andreas C. Müller & Sarah Guido, Introduction to Machine Learning with Python – A guide for data scientists, 1 st e/d, 2016.
	Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd e/d, 2019.

Canany the S		
Netwo Institu	Kim, MATLAB Deep Learning: With Machine Learning, orks and Artificial Intelligence, National Rehabilitation Re ute of Korea, Apress, 2017. topher M Bishop, Pattern Recognition and Machine Learning,	esearch
(b) REFER		2000
	//www.mathworks.com/help/deeplearning/	
	//www.tensorflow.org/guide	
3. https:	//docs.opencv.org/master/	
vi. COURSE I	PLAN	
Module	Contents	Hours
Ι	 Introduction to Computational Tools for AI - Role of computational tools in AI, Comparison of Python, MATLAB, and cloud-based tools Programming Languages for AI Python for AI: Basics and Advanced Concepts - Jupyter Notebooks, Google Colab MATLAB for AI: Introduction to MATLAB programming - MATLAB Live Scripts Al and Machine Learning Libraries (Python) Python Libraries: NumPy, Pandas, Matplotlib, Seaborn – Data handling & visualization Scikit-Learn – Traditional machine learning algorithms TensorFlow & PyTorch – Deep Learning frameworks OpenCV – Computer Vision tools NLTK & spaCy – Natural Language Processing tools 	10
11	 Al and Machine Learning Libraries (MATLAB) MATLAB Toolboxes: Statistics and Machine Learning Toolbox – Regression, Classification, Clustering Deep Learning Toolbox – Training Neural Networks Computer Vision Toolbox – Image processing for Al Reinforcement Learning Toolbox – Implementing RL models Text Analytics Toolbox – NLP and sentiment analysis Optimization Toolbox – Hyperparameter tuning & model optimization 	10
III	 Cloud and Distributed Computing for Al Google Colab, AWS Al Services, Microsoft Azure Al MATLAB Parallel Computing Toolbox for GPU/CPU processing Distributed computing with Apache Spark and Dask Introduction to Kubernetes and Docker for Al model deployment 	8
IV	 Hardware Acceleration for AI GPU vs CPU computation CUDA programming for deep learning 	8


B. Tech in Electronics and Communication Engineering

C C C C C C C C C C C C C C C C C C C		
	MATLAB GPU Coder Toolbox	
	Tensor Processing Units (TPUs)	
	Computational Optimization Techniques in Al	
	 Model optimization using ONNX (Python) and MATLAB Coder 	
	Hyperparameter tuning: Optuna, GridSearchCV	
	(Python) and Bayesian Optimization (MATLAB)	
	• Efficient training techniques: Batch processing, Data	
	Augmentation	
<u> </u>	Al Model Deployment and Monitoring	
	Python-based Deployment: Flask, FastAPI	
	MATLAB-based Deployment: MATLAB Production	
	Server, Web Apps	
	 Model versioning with MLflow 	
v	 Monitoring AI models in production 	9
V V	Case Studies and Hands-on Projects	3
	 Real-world AI applications using Python or MATLAB toolboxes 	
	Implementing a full AI pipeline from data preprocessing	
	to deployment	
		45
	Total Hours	
	Total Hours	

Continuous Assessment : End Semester Examination - 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments/Simulations	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment		40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 1/2 modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course Name		Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3MF	ARTIFICIA INTELLIGE FOR ROB	INCE	MINOR	3	0	0	0	3	2023
i. PREREQUI	SITE	Python P	rogramming	, Ba	asic	s of	Ele	ectrical a	nd Electronics
ii. COURSE C	VERVIEW								
This course introduces students to the use of artificial intelligence in robotics. It cover essential topics like robot design, vision, learning algorithms, speech recognition navigation, and human-like behavior.									
iii. COURSE (OUTCOMES								
After the comp	oletion of the	course, the	e student wil	l be	e ab	le to	D:		
Course Outcomes		Description					Level		
(:())	Explain the fu applications i		tals of AI techniques and their					Understand	
(:())	Design intelligent robotic system reinforcement learning.			s using supervised and					Apply
CO3	Implement na recognition ir	obstacle avoidance, and speech /stems.						Apply	
(.(.)4	Model robot responses us	ty and simulate emotion-aware					Apply		
(:05	Analyze modern AI technologies and ROS 2 for robotic		Apply						

iv. SYLLABUS

Introduction to AI and Robotics: Overview of AI and Robotics, Development environment software components (ROS, Python, and Linux), Robot control system and decision-making frameworks, Robot anatomy,

Practical Robot Design process, Recognising Objects using Neural Networks and Supervised Learning : Understanding the object recognition task, image manipulation, Using Yolo- an object detection model, implementation using supervised learning.

Reinforcement Learning and Genetic Algorithms for Pick and Place Operation: creating interface to the arm, Q learning for graphing the objects, introduction to Genetic Algorithm, comparison of ML approaches. Speech recognition with NLP -understanding

B. Tech in Electronics and Communication Engineering

speech-to-text (STT) systems, setting up Mycroft voice assistant software.

Navigation and Obstacle Avoidance : SLAM, Neural networks processing images, Training the neural network for navigation, CNN robot control implementation. Decision tree Random forest, GPS path finding.

Artificial Personality in Robots : Introduction to Turing test, chatbots and generative AI, The art and science of simulation, An emotion state machine, Playing the emotion game, creating a model of human behavior Developing the robot emotion engine, Modern AI and ROS 2 Overview.

v (a) T	EXT BOOKS
1.	Francis X. Govers, Artificial Intelligence for Robotics: Build intelligent robots
	that perform human tasks using AI techniques, Packt Publishing, Second
	Edition, 2024.
(b) F	REFERENCES
1.	Lentin Joseph, Mastering ROS for Robotics Programming, Packt Publishing,
	2021.
2.	Morgan Quigley et al., Programming Robots with ROS, O'Reilly Media, 2015.
3.	Peter Norvig and Stuart Russell, Artificial Intelligence: A Modern Approach,
	Pearson, 3 rd Edition.

vi. COURSE PLAN

Module	Contents	Hours
I	Introduction to AI and Robotics: Overview of AI and Robotics, Intelligent robots: Definitions and applications, History and evolution of AI in robotics, The basic principle of robotics and AI, Artificial intelligence and advanced robotics techniques, Development environment software components (ROS, Python, and Linux), Robot control system and decision-making frameworks, Robot anatomy, Subsumption architecture, Software setup and hardware.	9
I	 Practical Robot Design process : Understanding the task, use cases, using storyboard, Understanding the scope, identifying the hardware and software needs, writing specification. Recognising Objects using Neural Networks and Supervised Learning: Technical requirements, Overview of image processing, Understanding the object recognition task, image manipulation, Using YOLO- an object detection model, implementation using supervised learning. 	9
III	Reinforcement Learning and Genetic Algorithms for Pick	9

	understanding the risk in AI, ROS 2 features and architecture, Total Hours	45
	memory Modern AI and ROS 2 Overview : Exploring current state of AI,	
	emotion model, creating human information storage, context	
V	context. Developing the robot emotion engine - creating human	9
	An emotion state machine, Playing the emotion game, creating a model of human behavior - constructing a personality, Adding	
	chatbots and generative AI, The art and science of simulation,	
	Artificial Personality in Robots: Introduction to Turing test,	
	Algorithm, GPS path finding.	
	Entropy, one-hot encoding, Random forest - A* algorithm, D*	
IV	navigation, CNN robot control implementation. Decision tree -	9
IV	networks processing images, Training the neural network for	9
	navigation techniques, Floor Finder techniques, Neural	
	Navigation and Obstacle Avoidance: SLAM, alternatives to	
	(STT) systems, setting up Mycroft voice assistant software.	
	Speech recognition with NLP - Understanding speech-to-text	
	Algorithm, comparison of ML approaches.	
	designing software, setting up solution, creating interface to the arm, Q learning for graphing the objects, introduction to Genetic	
	and Place Operation: Technical requirements, task analysis,	

Continuous Assessment: End Semester Examination - 40: 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment		40 marks
End Semester Examination	:	60 marks
TOTAL		100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Comation S				•						
Course Code	Co	urse N	ame	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3MH	IMAGE	GNAL / E ESSINC		MINOR	3	0	0	0	3	2023
i. PREREQU	ISITE	Nil								
ii. COURSE	OVERV	IEW								
 bio signals. 2) To study the concept of image processing techniques like image enhancement, image reconstruction, image compression, image segmentation and image representation 3) To study the concept and working of various medical imaging techniques and imaging systems. iii. COURSE OUTCOMES After the completion of the course, the student will be able to:										
Course Outcomes			ſ	Description						Level
CO 1			concepts nd averag	of Bio signa ing.	l an	aly	sis,	sigi	nal	Understand
CO 2	-		daptive no n fundam	oise cancella entals.	atior	n ar	nd d	igita	al image	Understand
CO 3				nage proces enhanceme		g te	chn	ique	es like	Understand
CO 4	-		arious im technique	age segmen es	itati	on a	and			Apply
CO 5			oncept va systems	rious medica	al in	nag	ing	tecl	hniques	Understand
iv. SYLLABI	JS									

iv. SYLLABUS

Introduction to Biomedical Signals, Signal Conversion, Signal Averaging, Adaptive Noise Cancelling, Data Compression Techniques, Digital Image Fundamentals, Image Enhancement: Spatial domain methods, Image Restoration, Image segmentation, Morphological Image Processing, Image Compression, Medical Imaging systems (Basic Principle only): X-ray imaging, Computed Tomography, Ultrasonic imaging systems, Magnetic Resonance Imaging.

V			
v (a) TE	EXT B	OOKS	
1.	Willis	J. Tompkins, Biomedical Digital Signal Processing, PHI ,1st ed.,	1993
2.	Rafae	el C. Gonzalez and Richard E. Woods, Digital Image Processing, F	Pearson
۷.		ation, 4 th ed., 2018.	
3.		oh J. Carr and John M. Brown, Introduction to Biomedical Equ	uipment
		nology, Pearson Education, 4 th ed,2000	
(b) R	EFER	ENCES	
1.		Reddy, Biomedical Signal Processing Principles and Tech	nniques,
		raw-Hill education (India), 1 st ed., 2005	
2.	Anil k	K. Jain, Fundamentals of Digital Image Processing, PHI, 1 st ed., 1	989
3.	R.S.	Khandpur, Handbook of Biomedical instrumentation, McGr	aw Hill
		ation,3 rd ., 2023	
4.		e Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomedical Instrum	entation
		Aeasurements, Prentice Hall, 2 nd ed., 2001	
vi. COL	JRSE	PLAN	
Modu	ule	Contents	Hours
		Introduction to Biomedical Signals: The nature of Biomedical	
		Signals, Examples of Biomedical Signals, Objectives and	
		difficulties in Biomedical analysis.	
1		Signal Conversion: Simple signal conversion systems,	8
-		Conversion requirements for biomedical signals.	
		Signal Averaging: Basics of signal averaging, signal averaging	
		as a digital filter, a typical averager, limitations of signal	
		averaging, ECG signal averaging.	
		Adaptive Noise Cancelling: Principal noise canceller model,	
		60-Hz adaptive cancelling using a sine wave model, other	
II		applications of adaptive filtering. Digital Image Fundamentals: Image representation, basic	9
11		relationship between pixels, basic properties like brightness,	3
		contrast, hue, saturation, RGB model	
		Image Enhancement: Spatial domain methods: point	
		processing histogram processing, image subtraction, image	
		averaging, Spatial filtering: smoothing filters, sharpening filters.	
111		Image Restoration: Degradation model, inverse filtering,	9
		Wiener filtering.	
		Morphological Image Processing: erosion, dilation, opening	
		and closing.	
		Image segmentation: Classification of Image segmentation	
IV		techniques, region approach, Segmentation based on	10
		thresholding, edge-based segmentation	

у	Data Compression Techniques: Need for compression, redundancy, transform based compression. Huffman coding - Static Huffman coding, Modified Huffman coding, Data reduction of ECG, Residual differencing, Adaptive Coding, Run Length Coding.	
V	 Medical Imaging systems (Basic Principle only): X-ray imaging - Properties of X-rays, X-ray machine applications of X-rays in medicine. Computed Tomography: Principle, image reconstruction, applications. Ultrasonic imaging systems: Basic principle, applications. Magnetic Resonance Imaging: Basic NMR components, Biological effects and advantages of NMR imaging. 	9
	Total Hours	45

Continuous Assessment : End Semester Examination - 40 : 60

TOTAL	:	100 marks
End Semester Examination	:	60 marks
Total Continuous Assessment	:	40 marks
Assessment through Tests	:	20 marks
Assignments	:	15 marks
Attendance	:	5 marks
Continuous Assessment		

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours

S6 HONOURS

Course Code	Course Na	me	Category	L	т	Р	J	Credit	Year of Introduction
23ECL3HB	ELECTRONIC DESIGN AND AUTOMATIO	-	HONOURS	3	0	0	0	3	2023
i. PREREQU	JISITE Nil								
ii. COURSE	OVERVIEW								
algorithms, a placement, f	e of this cours and VLSI desig loor planning, a plex design aut	n tech nd rout	niques, includ ing algorithms	ling s. S [.]	pa tude	rtitio ents	onir s wi	ng, layou Il apply ti	t compaction, nese concepts
iii. COURSE	OUTCOMES								
After the com	npletion of the c	ourse, t	he student wil	l be	e ab	le to	D:		
Course Outcomes			Description						Level
CO1	Explain basic as BFS, DFS path algorithm	, Topo	erminology, se logical Sort, a						Understand
CO2	Apply partitic problems with		echniques to lesign automa				LSI	design	Apply
CO3	Apply layout theoretical a physical desig	com pproacl	paction tech	niqu	les	us			Apply
CO4	Apply placem algorithms an layout design.	nd repi	d floor plann resentations f						Apply
CO5	Apply routing efficiently des	•		izat	ion	tech	nnic	lues to	Apply

iv. SYLLABUS

Graph Terminology: Basic graph theory terminology, Data structures for representation. Graphs Search Algorithms: Breadth First Search, Depth First Search, Topological Sort. Shortest Path Algorithms: Dijkstra's Shortest-Path Algorithm for single pair shortest path.

Design Automation: VLSI Design Flow. Partitioning: Levels of Partitioning, Parameters for Partitioning, Kernighan-Lin Algorithm, Fiduccia-Mattheyses Algorithm, Simulated Annealing.

Layout: Layout Layers and Design Rules, Physical Design Optimizations. Compaction: Applications of Compaction, Informal Problem Formulation, Graph Theoretical

Formulation, Longest Path algorithm for DAG, Liao-Wong Algorithm. Placement: Optimization Objectives, Wirelength Estimation, Weighted Wirelength. Placement Algorithms: Quadratic Placement. Floorplanning: Optimization Objectives, Slicing Floorplan, Non-Slicing Floorplan. Floorplan Representations: Constraint Graph, Sequence Pair.

Floorplan Algorithms: Minimum Area Algorithm. Global Routing: Terminology and Definitions, Optimization Goals. Maze Routing Algorithms: Lee's Algorithm. Detailed Routing: Horizontal and Vertical Constraint Graph. Channel Routing Algorithms: Left-Edge algorithm.

v (a) T	EXT BOOKS
1.	Jin Hu, Jens Lienig, Igor L. Markov, and Andrew B. Kahng, VLSI Physical Design: From Graph Partitioning to Timing Closure, Springer, 2011.
2.	Sabih H. Gerez, Algorithms for VLSI Design Automation, John Wiley & Sons, 2006.
3.	Naveed A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers, 1999.
(b) F	REFERENCES
1.	Sadiq M. Sait and H. Youssef, VLSI Physical Design Automation: Theory and Practice, World Scientific, 1999.
2.	Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest,

Introduction to Algorithms, 3rd Edition, The MIT Press, 2009.

vi. COURSE PLAN

Module	Contents	Hours
I	Graph Terminology, Search Algorithms and Shortest Path Algorithms: Graph Terminology: Basic graph theory terminology, Data structures for representation. Graphs Search Algorithms: Breadth First Search, Depth First Search, Topological Sort. Shortest Path Algorithms: Dijkstra's Shortest-Path Algorithm for single pair shortest path.	9
II	Design Automation and Partitioning Algorithms: Design Automation: VLSI Design Flow. Partitioning: Levels of Partitioning, Parameters for Partitioning, Kernighan-Lin Algorithm, Fiduccia-Mattheyses Algorithm, Simulated Annealing	9
111	Layout Compaction: Layout: Layout Layers and Design Rules, Physical Design Optimizations Compaction: Applications of Compaction, Informal Problem Formulation, Graph Theoretical Formulation, Longest Path algorithm for DAG, Liao-Wong Algorithm.	9
IV	Placement and Floor planning: Placement: Optimization Objectives, Wirelength Estimation, Weighted Wirelength. Placement Algorithms: Quadratic Placement Floorplanning: Optimization Objectives, Slicing Floorplan, Non-Slicing Floorplan Representations: Constraint Graph, Sequence Pair. Floorplan Algorithms: Minimum Area Algorithm	9

	Algorithms: Left-Edge algorithm Total Hours	45
v	Global Routing and Detailed Routing: Global Routing: Terminology and Definitions, Optimization Goals Maze Routing Algorithms: Lee's Algorithm Detailed Routing: Horizontal and Vertical Constraint Graph Channel Routing	

Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination		60 marks
TOTAL	:	100 marks

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 1/2 modules

- Maximum Marks: 60
- Exam Duration: 3 hours

Course Code	Course N	ame	Category	L	т	Ρ	J	Credit	Year of Introduction
23ECL3HD	DESIGN ANI ANALYSIS C ANTENNAS	_	HONOURS	3	0	0	0	3	2023
i. PREREQI	JISITE	23ECL3	30C- Electrom	agr	etic	: Fie	eld .	Theory	
ii. COURSE	OVERVIEW								
design and arrays and	This course aims to impart knowledge on the basic parameters, matching techniques, design and working of various broad band antennas, practical antennas, antenna arrays and its radiation patterns. It also introduces standard software to design antennas with a set of given specifications.						nnas, antenna		
iii. Course	i. COURSE OUTCOMES								
After the con	fter the completion of the course, the student will be able to:								
Course Outcomes			Description						Level
CO1		•	acept of radiation mechanism, antenna Understand			Understand			
CO2	Analyze different	• •	es of broad b	anc	l ar	nten	nas	and its	Apply
CO3	Design of va field patterns	-	ctical antenna	s, a	ante	nna	arı	rays and	Apply
CO4	Use Antenna antennas.	a Design	Software to d	esię	gn v	ario	ous	types of	Apply
CO5	Explain the c its applicatio	•	f Intelligent R	efle	ctin	g S	urfa	ices and	Understand

iv. SYLLABUS

Review of Antenna Parameters, Relation between radiation fields and magnetic vector potential, Antenna matching, Review of different antennas, Analysis of Circular Loop and Biconical Antenna, Helical Antennas, Current induced in a dipole antenna, Near fields of linear antennas, self and mutual impedance, arrays of parallel dipoles, Yagi-Uda antennas, Radiation from open ended wave-guides, Designing an antenna with a set of given specifications using standard software,

Parabolic reflector antennas, gain and beam width of reflector antennas, aperture field and current distribution methods, radiation patterns of reflector antenna, Frequency independent antennas, Antenna arrays, Adaptive Beam forming. 2D arrays – Rectangular and Circular array.

v (a) TEXT BOOKS

1.		oles J. Orfanidis – Electromagnetic waves and antennas. Avail /eceweb1.rutgers.edu/~orfanidi/ewa/	able at:			
2.	Cons	rantive A Balanis -Antenna Theory - Analysis and Design – 2/ / & Sons.	/e John			
3.		D. Krans, Ronald J. Marhefka : Antennas for all Application	s , 3/e,			
4.		nas A Milligan – Modern Antenna Design, 2/e John Wiley & So	ns.			
(b) F	REFER	ENCES				
1.		n R.E, Antennas & Radio Wave Propagation, McGraw Hill. 198				
2.		an E.C. & K. G. Balmain, Electromagnetic Waves & Ra ems, 2/e, PHI.	adiating			
3.		G.S.N., Antenna and Wave Propagation, Pearson, 2013.				
4.	Sisir Hill,2	K. Das& Annapurna Das, Antenna and Wave Propagation, M 012	lcGraw			
vi. CO	JRSE	PLAN				
Mod	ule	Contents	Hours			
I		Antenna Parameters, Relation between radiation fields and magnetic vector potential – Helmholtz equation and Lorentz conditions. Antenna matching –T match, Baluns, Gamma and Omega match. Working of dipole antennas, V and rhombic antenna.	9			
11		Helical Antennas (normal mode and axial mode) – relation for far fields, radiation resistance and gain. Current induced in a dipole antenna – Pocklington and Hallen's integral equations. Solution of Hallen's integral equation for current induced in a dipole antenna for delta gap model.	9			
III		Aperture antenna – Field equivalence principle. Radiation from open-ended wave-guides, horn antennas, horn radiation fields, horn directivity, optimum horn design, Design of Rectangular micro-strip antennas. Antenna design with a set of given specifications using standard software (MATLAB/HFSS/CST Microwave Studio or any Open software)				
IV		Parabolic reflector antennas, gain and beam width of reflector antennas, aperture-field and current distribution methods, radiation patterns of reflector antennas, Frequency independent antennas – Rumsey Principle – Spiral Antennas. Design of log periodic dipole arrays.	9			
v		Antenna arrays – General expression for array factor. Grating lobes. One dimensional arrays- Broad side, end fire and	9			

technologies (e.g., relays, massive MIMO)	Chebyshev arrays. Concept of beam steering. Adaptive Beam forming. 2D Rectangular array. Introduction to Intelligent Reflecting Surfaces, applications in wireless communication, Comparison with traditional	
Total Hours		45

Simulation Assignment

- 1. Familiarization of HFSS/CST/ MATLAB.
- 2. Characterization of arrays using HFSS/CST/ MATLAB.
- 3. Characterization of horn, reflector antenna using HFSS/CST/ MATLAB
- 4. Characterization of microstrip array antenna using HFSS/CST/ MATLAB.

vii. ASSESSMENT PATTERN

Continuous Assessment: End Semester Examination - 40: 60

:	5 marks
:	15 marks
:	20 marks
:	40 marks
:	60 marks
:	100 marks
	· · · · · · · · · · · · · · · · · · ·

CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ¹/₂ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours


~~~~										
Course Code	Course Name		Category	L	т	Ρ	J	Credit	Year of Introduction	
23ECL3HF	MULT SIGNA PROC		G	HONOURS	2	1	0	0	3	2023
i. PREREQU	ISITE	23ECI	_30B:	Digital Signal	Pro	ces	sing	)	·	
ii. COURSE	OVERV	<b>IEW</b>								
				ledge on Multir ne systems wh		-				ply the mutirate rent rates.
iii. COURSE	OUTCO	OMES								
After the com	npletion	of the c	course	e, the student v	vill k	be a	ble	to:		
Course Outcomes	Description Level				Level					
CO1	Explain the principles of multirate signal processing, Understand encompassing decimation, interpolation, and their effects on signal spectra.									
CO2	Implement two-channel and M-channel filter banks using Apply polyphase structures to achieve desired signal processing objectives.									
CO3	Implement two-channel FIR paraunitary QMF banks and analyze their reconstruction capabilities.Apply									
CO4		Implement scaling techniques to manage dynamic range Apply and minimize quantization errors in digital filter designs.								
CO5	banks	and	how	les behind cos it facilitate l reconstructior	s	mo effi			n in filter subband	Understand
<b>iv. SYLLAB</b> Fundamenta		Iltirate †	heorv							
			•	Itirate operatio	าร					
	. ,								<b>C</b> 11 1	

Maximally decimated filter, M-channel perfect reconstruction filter banks Polyphase representation



Perfect reconstruction systems Paraunitary PR Filter Banks- Filter Bank Properties induced by paraunitarity

Quantization – types, effects filter banks.

Cosine Modulated filter banks Polyphase structure PR Systems

## v (a) TEXT BOOKS

- 1. P.P. Vaidyanathan. Multirate systems and filter banks. Prentice Hall. PTR. 1993
  - 2. N.J. Fliege. Multirate digital signal processing . John Wiley 1994.
  - 3. Sanjit K. Mitra. Digital Signal Processing: A computer based approach. McGraw Hill. 1998

## (b) REFERENCES

- 1. R.E. Crochiere. L. R. Multirate Digital Signal Processing, Prentice Hall. Inc.1983.
  - 2. J.G. Proakis. D.G. Manolakis. Digital Signal Processing: Principles. Algorithms and Applications, 3rd Edn. Prentice Hall India, 1999.

#### vi. COURSE PLAN

Module	Contents	Hours
I	The sampling theorem - sampling at sub nyquist rate - Basic Formulations and schemes. Basic Multirate operations- Decimation and Interpolation - Digital Filter Banks- DFT Filter Bank- Identities- Polyphase representation	9
II	Maximally decimated filter banks: Polyphase representation - Errors in the QMF bank- Perfect reconstruction (PR) QMF Bank - Design of an alias free QMF Bank M-channel perfect reconstruction filter banks -Uniform band and non uniform filter bank - tree structured filter bank- Errors created by filter bank system- Polyphase representation- perfect reconstruction systems	9
111	Perfect reconstruction (PR) filter banks Paraunitary PR Filter Banks- Filter Bank Properties induced by paraunitarity- Two channel FIR paraunitary QMF Bank- Linear phase PR Filter banks- Necessary conditions for Linear phase property	9
IV	Quantization Effects: -Types of quantization effects in filter banks coefficient sensitivity effects, dynamic range and scaling.	9



V	Cosine Modulated filter banks Cosine Modulated pseudo QMF Bank- Alas cancellation- phase - Phase distortion- Closed form expression- Polyphase structure PR Systems	9
	Total Hours	45

#### Continuous Assessment : End Semester Examination – 40 : 60

Continuous Assessment		
Attendance	:	5 marks
Assignments	:	15 marks
Assessment through Tests	:	20 marks
Total Continuous Assessment	:	40 marks
End Semester Examination	:	60 marks
TOTAL	:	100 Marks

#### CONTINUOUS ASSESSMENT TEST

- No. of tests: 02
- Maximum Marks: 30
- Test Duration: 1 ½ hours
- Topics: 2 ¹/₂ modules

- Maximum Marks: 60
- Exam Duration: 3 hours